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Abstract: We present a general linear-response method for including nonequilibrium solvation effects (solvent
friction effects) in variational transition state theory with multidimensional tunneling (VTST/MT) for calculating
reaction rate constants in solution. The generalized Langevin approach is used to include a collective solvent
coordinate into VTST/MT, and a general prescription is suggested for coupling this collective solvent coordinate
to the solute, which is treated in its full dimensionality. The new formalism is illustrated by application to the
aqueous free radical reaction H+ CH3OH f H2 + CH2OH at 298 K. This reaction is treated with a linear
mixing of Hartree-Fock theory and Austin Model 1 with specific reaction parameters (HF||AM1-SRP). The
results with nonequilibrium solvation (NES) are compared to those obtained earlier with the separable equilibrium
solvation (SES) and the equilibrium solvation path (ESP) approximations. We focus on the speedup due to
solvation and on the kinetic isotope effects (KIEs). We calculate that nonequilibrium solvation decreases the
rate constant by a factor of 2 but changes the KIEs by less than 2%. We also present results that show how
the nonequilibrium effect depends on the solvation time and the strength of the solute-solvent coupling.

1. Introduction

We have recently presented1-3 general procedures for cal-
culating reaction rates in solution by variational transition state
theory with multidimensional tunneling4-6 (VTST/MT) under
the assumption of an equilibrium solvation path (ESP) or the
simpler assumption of separable equilibrium solvation (SES).
We illustrated these methods in ref 2 for two ionic reactions,
and in a subsequent paper3 we applied them to the free radical
reaction

in aqueous solution.
The present paper extends these methods to include the effect

of nonequilibrium solvation (NES) on reaction rates, a subject
that has received considerable attention in recent years.7 The
present extension builds on methods presented previously in a
number of papers,8-13 and it provides a systematic framework

for treating arbitrary systems including all degrees of freedom
of the solute.

Central to the hierarchy of methods employed in this work
is the division of the system into an explicit subspace and an
implicit bath. In general, for anN-atom solute, one can calculate
equilibrium solvation (ES) rate constants (either SES or ESP)
by treating the 3N solute coordinates explicitly and taking all
of the solvent coordinates as implicit.2,3,12,14-16 This requires
the potential of mean force17 W(x) in the 3N-dimensional space
x of solute coordinates. From a dynamical perspective, this
treatment can include full solute anharmonicity and nonlinear
solute-solvent coupling, although in practical work one might
use local harmonic approximations for the solute or assume
linear response of the solvent at various stages of an actual
calculation.

To introduce NES effects one must dynamically determine
the extent and nature of solvent participation in the reaction
coordinate.18,19 One can do this by selectingm solvent coordi-
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nates on a physical basis; these solvent coordinates may be
Cartesian coordinates of individual solvent atoms, but, to be
realistic, such an approach often requires very largem. Thus, it
is often preferable to use one or more collective solvent
coordinates, e.g., a coordinate representing the solvent electric
polarization field.8,11,20-23 Provided one can calculate the correct
potential of mean forcew(x, y), wherex denotes the solute
coordinates, andy denotes the set ofm selected solvent
coordinates, such a treatment can be exact if all implicit solvent
coordinates (the orthogonal complement ofy in the full set of
solvent coordinates) are at equilibrium, and, in a classical world,
it can provide a variational transition state upper bound even if
they are not.16 This observation provides one possible starting
point for a variational transition state theory of reactions in
solution that includes nonequilibrium solvation.

In the present paper we restrict ourselves tom ) 1, so that
y reduces to a scalar variabley. Furthermore we write

whereW(x) is the usual potential of mean force for solute only,17

and ∆GNES
0 (x, y) is the nonequilibrium contribution to the

standard-state free energy of solvation. We may also write2

where V(x) is the gas-phase potential energy surface, and
∆GS

0(x) is a free energy of solvation for constrained valuesx
of the solute coordinates. Then, if desired, we can regroup the
terms as

where

and ∆GNE
0 (x) denotes the standard-state nonequilibrium free

energy of solvation. The equilibrium term∆GS
0(x) is calculated

by an SM5-class solvation model,24-27 which includes a linear-
response treatment of electrostatics28 and a general (nonlinear)
treatment of first-solvation-shell effects,29 and the nonequilib-

rium term GNES(x, y) is modeled using linear response (LR)
based on the generalized Langevin equation withm collective
solvent coordinates.30-32 Only in the limit of m f ∞ (or some
number of the order of magnitude of the number of atoms in a
macroscopic system) can this treatment truly mimic a dissipative
solvent. Nevertheless, one can sometimes get a good quantitative
approximation to them ) ∞ limit with m as small as 5.10 The
adequacy of restricting the number of effective solvent coor-
dinates to be small is problem dependent,16 but m ) 1 clearly
provides a logical starting point for exploratory studies of
nonequilibrium effects.

Not only will we examine improving on the equilibrium
solvation result by including nonequilibrium solvation through
GNES(x, y), but also we will consider approximating the full
equilibrium solvation result by the separable equilibrium sol-
vation2 approximation. Thus our hierarchy of methods has three
tiers: (i) separable equilibrium solvation, denoted SES, in which
free energies of solvation are added to a gas-phase reaction path
(ii) (full) equilibrium solvation, denoted ESP (for equilibrium
solvation path) to denote that the reaction path or perhaps just
the critical configuration along the reaction path is optimized
in the presence of equilibrium solvation forces, and (iii)
nonequilibrium solvation, denoted NES. Since we employ a
formulation of variational transition state theory with multidi-
mensional tunneling contributions in terms of reaction paths,4-6

it is useful to point out here that the SES calculation is based
on the gas-phase reaction path,33-36 denoted GRP, which is
based on the gas-phase potential energy surfaceV(x) and passes
through the gas-phase saddle point. In contrast the ESP
calculation involves a reaction path based onW(x); this reaction
path (like the dynamics calculations based on it) is called the
equilibrium solvation path12 (ESP). Finally, the NES calculation
involves a reaction path through a (3N + m)-dimensional space
(in the present paper, we havem ) 1, but the theory is more
general); this reaction path is based onW(x, y) and is called
the nonequilibrium solvation path or NESP. Any of these
reaction paths may be defined by the steepest-descents
prescription,33-36 if desired, i.e., one may use the minimum-
energy path from reactants-to-products onV(x), W(x), or w(x,
y) (more generallyw(x, y)).

Section 2 presents the theoretical formulation of nonequilib-
rium solvation effects used here. Section 3 give details of an
application to reaction R1. Section 4 presents the results and
discussion, and Section 5 contains concluding remarks.

2. Theory

There have been numerous attempts to include nonequilibrium
solvation effects in the transition state theory of condensed-phase
reactions.9-13,23,37-53 In the present work, we will use the generalized
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Langevin approach with the single-oscillator approximation of Garrett
and Schenter,13 and we will show how it can be used in conjunction
with a full variational transition state theory calculation including
optimized multidimensional tunneling.

2.1. Hamiltonian. To include nonequilibrium solvation effects we
add a solvent coordinatey using the approximation of a single harmonic
oscillator linearly coupled to the reaction coordinate. In this approxima-
tion the Hamiltonian for calculating the free energy of the generalized
transition states becomes

wherex denotes the solute mass-scaled Cartesian coordinates (in terms
of which we may write the reaction coordinates and the other solute
coordinates),xqdenotes the equilibrium solvation saddle point values
of the solute coordinates,y is an effective solvent coordinate,py is its
conjugate momentum,Tsolute is the solute’s kinetic energy,W is the
potential of mean force (equal to the gas-phase potential plus the
equilibrium free energy of solvation for thatx), µ is the scaling mass4

(which must and will cancel out and have no effect on the results),F
is a bath force constant,C is a solute-bath coupling vector with 3N
componentsCi (whereN is the total number of atoms), andT denotes
a transpose. Following Garrett and Schenter,13 the bath parametersF
andCi are determined from an analytic expression for the friction kernel
which is in a Gaussian form. Therefore, the force constant is

and the elements of the coupling vector are

where k̃ is Botzmann’s constant,T is temperature,τ is the solvation
time (which isσ in ref 13), andDi is the diffusion constant of the atom
ki corresponding to Cartesian coordinatei. Since the reactant free energy
is an equilibrium quantity,Ci is set equal to zero at reactants for
calculating reactant free energies.

Note that although eqs 5-7 do not explicitly involve electrostatics
(e.g., the solute dipole moment and partial atomic charges do not
appear), the quantitiesτ andDi result from the collective operation of
all solute-solvent forces, and hence the “correct” values of these
quantities implicitly include electrostatics, hydrogen bonding, electron
correlation, and so forth. In fact we will explicitly take account of

electrostatics and first-solvent shell effects when we estimate numerical
values forCi andτ as discussed in Section 2.2.

From eq 1, we can write the effective potential as

Note that we can solve for the equilibrium valueyeq of y by

Therefore,

Thus the last term in eq 5 can be written as1/2F(y - yeq)2. As stated
above,C is nonzero only for calculating fluxes (e.g., free energies of
transition states, which are quasi-equilibrium quantities, not true
variables of equilibrium thermodynamics), not for calculating equilib-
rium properties such as reactant free energies.

From eq 8, we can express the (3N + 1)-dimensional gradient as

wherej ) 1, ..., 3N. The Hessian matrix can be written as

wherei, j ) 1, ..., 3N. Notice that in the limit of zero coupling (C )
0), the Hessian matrix is reduced to a block diagonal form of a (3N ×
3N) matrix and a force constant obtained from the collective solvent
coordinate. In this case, the vibrational frequencies of the solute are
the same as the ESP approximation plus a “pure” solvent mode of
frequency (in radians)

In wavenumbers this is

The generalized transition state vibrational partition functions along
a reaction path arise from motions in a space orthogonal to overall
translation and rotation and to the reaction coordinate.4 These motions
may be separated (to first order) by constructing a Cartesian projection
operator54 that describes the overall translation, rotation, and reaction
coordinate direction motion of the solute molecule, and then applying
this operator to “filter” these motions from the force constant matrix.
Alternatively one may describe the vibrational motion in terms of
curvilinear internal coordinates by applying the WilsonGF matrix
method55,56to transform the force constant matrix of eq 12 into internal
coordinates,55-58 projecting out the reaction coordinate direction in
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internal coordinates,57 and then transforming the force constant matrix
back to Cartesian coordinates. Both of these methods result in a
projected force constant matrix in terms of Cartesian coordinates which
may then be used to evaluate the vibrational frequencies. In the present
work, we use the latter method to project out the translational, rotational,
and reaction coordinate direction. The curvilinear coordinate method
is more physical for most cases in the gas phase,57-59 and for the same
reason it should be more physical for most cases in liquid solution.

We can express the potential of mean forceW(x) in eq 2 as a Taylor
expansion in terms of the displacements of atomic Cartesian coordinates
xi from a reference structurexi

0

or in terms of the displacements of curvilinear internal coordinatesqi

whereF′ denotes total number of the internal coordinates (g(3N - 5)
for linear molecules,g(3N - 6) for polyatomic molecules, with the
equality for nonredundant internal coordinates and the inequality for
redundant internal coordinates). Also, a curvilinear internal coordinate
qi can be expressed as a power series in Cartesian displacement
coordinatesxi

in which Bij is an element of the WilsonB matrix

andC i
jk is an element of the tensorCi

(The Ci tensor should not be confused with the coupling vector of eq
7.) The algorithms for evaluating the generalized normal mode
vibrational frequencies using WilsonGF matrix method are described
in detail in previous papers.57,58 In present work, using method (ii), we
take qF+1 ) y, and we only need to extend the dimensions of theB
matrix andCi tensor by 1 for the extra degree of freedom (the solvent
coordinatey) and give a value to the (3N + 1, 3N + 1) element of the
diagonal reciprocal mass tensor55 µ. We assign values to the elements
of B andCi by assuming that the collective solvent coordinate remains
“pure” when we transform from the redundant or nonredundant internal
coordinate system to Cartesian coordinates. This corresponds to taking
the (F + 1, 3N + 1) element of theB matrix, which indicates the
(∂y/∂y) derivative, equal to 1; and the other elements in the last row
and column ofB and of the values of the elements in the extended
parts of theCi tensors are set equal to zero. As a result, a “solvent
mode” with a large contribution fromy in the eigenvector is observed
after diagonalizing the projected Hessian matrix. We setµ3N+1,3N+1 equal
to the scaling massµ introduced in eq 5. (When this is done the resulting
rate constants are independent ofµ, as they should be.) There is
considerable flexibility in defining internal coordinates, and these
choices seem intuitive.

To carry out dynamics calculations, we have to add a pure solvent
contribution to the zero-point energy (ZPE) and vibrational partition
functions of the reactant and product. Unlike the saddle point and
generalized transition states, the solvent mode is not coupled to the

other modes at the reactants and products, but instead has the uncoupled
frequency52 of eq 13 or 14. This frequency is also used in interpolation
schemes (such as dual-level60 and mapped IVTST61 calculations).

The solute-solvent coupling potential in eq 5 is an approximation
to a more general expression.10,30,31,52This model is very general, but
other more specific models may allow more physical low-order
modeling in individual cases. For example, Hynes and co-workers have
considered a variety of models for generalized Langevin equations,
attempting to capture the physics of solvent motion more completely
for specific cases.39 In ref 11, a general set of effective solvent
coordinates was defined, and expressions for the effective force constant
in terms of the generalized Born model of the electrostatic component
of solvation were derived. The present model is general enough to treat
cases where the dominant coupling mechanism is electrostatic (e.g.,
dipolar), but it is more general and is also applicable for other
mechanisms of solute-solvent coupling. There could be advantages
in focusing on electrostatic mechanisms in some cases, when the more
general formalism may be appropriate in others. Hwang et al.42 have
presented a model that includes nonequilibrium solvation without
involving a separate calculation of equilibrium solvation. This was done
by searching for the transition state in a combined solute-solvent space
which accounts explicitly for solvent-induced dipoles.

2.2. Solvent Parameters.The present model for nonequilibrium
solvation effects involves two kinds of parameters, a coupling strength
and a solvation time.

2.2.1. Coupling Strength and Dynamical Participation Factors.
The coupling strength is determined from eq 7, in whichDi is treated
as an effective diffusion constant for atomk (where i is one of the
Cartesian coordinates of atomk). The effective diffusion constant is
determined from a prototype diffusion constant that gauges the intrinsic
strength of solute-solvent coupling for a given type of solute fragment
in a given solvent and from a dynamical participation factor that gauges
the actual exposure of the given atom of the solute to solvent at a
particular solute geometry. A small, effective diffusion constant of atom
or fragment X in solvent S corresponds to strong X-S coupling, but
if X is only partially exposed to solvent at the transition state (due to
being buried by the rest of the molecular structure), then the X-S
coupling in that situation is smaller. The dynamical participation factors
may be calculated from solvent-accessible surface areas,62 from electric
polarization fractions,63 or from atomic contributions to free energies
of solvation. Using solvent-accessible surface area emphasizes the
shortest-range interactions, and using electric polarization fractions
emphasizes the longer-range ones, whereas using free energies of
solvation weights both types of contributions. We will present results
based on both surface areas and free energies to test the sensitivity to
such choices.

The coupling strength for atomk is determined from a prototype
diffusion constant multiplied by a participation fractionfk. We define
the effective diffusion constantDk for atomk in the solute by

where Dk
(proto) is the diffusion constant of a prototype model, for

example,Dk
(proto) of a hydrogen atom is taken the atomic hydrogen

diffusion constant,Dk
(proto) of a carbon atom in an alkyl group may be

taken as the diffusion constant of methane, andDk
(proto) of a hydroxylic

oxygen atom is taken as the diffusion constant of water. We consider
two schemes for estimatingfk.

In scheme A we use the solvent-accessible surface area62 Ak of atom
k. Thus

(58) (a) Chuang, Y.-Y.; Truhlar D. G.J. Chem. Phys. 1997, 107, 83. (b)
Chuang, Y.-Y.; Truhlar, D. G. J. Phys. Chem.A. 1998, 102, 242.

(59) Natanson, G. A.; Garrett, B. C.; Truong, T. N.; Joseph, T.; Truhlar,
D. G. J. Chem. Phys. 1991, 94, 7875.

(60) (a) Hu, W.-P.; Liu, Y.-P.; Truhlar, D. G.J. Chem. Soc., Faraday
Trans. 1994, 90, 1715. (b) Chuang, Y.-Y., Truhlar, D. G.J. Phys. Chem.
A 1997, 101, 3808;1997, 101, 8741(E). (c) Chuang, Y.-Y.; Corchado, J.
C.; Truhlar, D. G.J. Chem. Phys.1999, 110, 550.

(61) Corchado, J. C.; Coitin˜o, E. L.; Chuang, Y.-Y.; Fast, P. L.; Truhlar,
D. G. J. Phys. Chem. 1998, 102, 2424.

(62) Lee, B.; Richards, F. M.J. Mol. Biol. 1971, 55, 379.
(63) Cramer, C. J.; Truhlar, D. G.Chem. Phys. Lett. 1992, 198, 74;1993,

202, 567(E).
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0) + ... (16)
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Ci
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0) + ... (17)
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0}, i ) 1, ...,F; j ) 1, ..., 3N (18)
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)|{xj}){xj

0}, i ) 1, ...,F; j, k ) 1, ..., 3N (19)
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whereAk is the solvent-accessible surface area of atomk in the solute
under consideration at the solute geometry under consideration, and
Ak

(proto) is the solvent accessible surface area of atomk in the prototype.
Scheme A seems very reasonable on the basis of dimensional analysis,
but it may be questionable when dynamic aspects of solvation are
dominated by long-range forces.

Scheme G takes advantage of the fact that SMx models allow an
atom-by-atom decomposition of the free energy of solvation. Thus the
standard state (0) free energy of solvation of a system at a fixed-
geometryx is26,27

and its two parts are each decomposed on an atom-by-atom basis:63

and

In scheme G we write

where, as explained in the following paragraphs,∆GEP
(atom)(k) is the EP

solvation free energy for an isolated atomk calculated using the Born
equation64 with intrinsic Coulombic radiusFk and using the partial
chargesqk(x) obtained from the same geometryx, and∆GCDS

(atom)(k,x) is
the CDS component of the solvation free energy for an isolated atom
k calculated with the atomic surface tensionσk that atomk has in the
molecule of interest at geometryx. If the functional group in the
prototype differs sufficiently from that in the molecule under consid-
eration, one might replaceqk in the atomic Born calculation byqk from
the prototype, but that is not done here.

In the SM5.42 model27 used here

and

whereσk
A(x) andσM(x) are the atomic-number-dependent and atomic-

number-independent contributions to the geometry-dependent surface
tension of atomk, and theAk(x) is the exposed van der Waals surface
area of atomk. Therefore

and

The decomposition of∆GEP is carried out by a method that we have
previously61 called method I. In this method

and

where ∆EE(x) is the change in the internal electronic kinetic and
Coulombic energy of the whole solute upon equilibrium solvation by
the solvent,GP(x) is the whole electric polarization free energy, and
GP(k, x) is the part ofGP that is attributable to atomk. The latter is
easily identified63 in the SM5.42 solvation model27 used here because
GP in that model is given by the generalized Born65-67 equation. Finally

In principle the dynamical partition factorsfk are function of the
geometryx, but we make the further approximation of evaluating them
at the saddle point of the free energy surfaceW(x) and treating them
as constants.

2.2.2. Solvent Response Spectral Profile.The solvation time is
taken as having the same values for all atoms of the solute and depends
only on the solvent. In the present work, following earlier numerical
tests by McRae et al.,68 we have chosen to use a single time constant,
i.e., we characterize the solvent response spectrum by a single
frequency. For more accuracy one could use a larger number of effective
solvent coordinates, each with its own frequency. However, at the
present stage of development this does not seem warranted because
the assumption of a single time constant probably leads to smaller error
than the many other uncertainties of the theory, such as the estimation
of the solute-solvent coupling strength. For example, Tucker44 found
that nonequilibrium effects on reaction rates are determined mainly by
two solvent parameters, a single time scale characterizing the solvent
response spectral profile and the overall strength of the coupling.
Tucker’s treatment was based on a one-coordinate treatment of the
solute. We use a full atomic representation of the solute, and so we
replace the latter by an effective coupling strength for each atom of
the solute. However, we retain only a single time constant for all
solvent-solute couplings. This seems reasonable in light of the analysis
of Maroncelli et al.,69 which showed that, in many cases, the solvation
time constant is primarily a function of solvent properties, not solute
properties. The analysis of Maroncelli et al. is based on fast under-
damped solvent motion in the inertial streaming regime. This kind of
motion is known to account for more than 50% of solvent relaxation
in most cases.69-71 On the basis of this model, Maroncelli et al. gave
a simple approximation to the solvation relaxation timeτ which can
be easily estimated from the dipole moment, moments of inertia, density,
dielectric constant, and temperature of any polar solvent. This model
leads toτ ) 10 fs for water, in good agreement with the value of 8.5
fs estimated by Garrett and Schenter13 from the molecular dynamics
simulations of Palmer and Schenter.72 We recommend using the formula
of Maroncelli et al.69 as a standard that can be widely tested against
experiment, and we shall useτ ) 10 fs in the present work. It is
interesting to note that this is much faster than values calculated by
assuming overdamped solvent relaxing by a diffusive mechanism; in
that case the solvation response time should be equal to the longitudinal
relaxation timeτL, which itself may be estimated from the Debye time
(or transverse relaxation time)τD, the dielectric constantε, and the
refractive indexn. One obtains73,74

(64) Born, M.Z. Phys. 1920, 1, 45.

(65) Hoijtink, G. J.; de Boer, E.; VanderMeij, P. H.; Weiland, W. P.
Recl. TraV. Chim. Pays-Bas1956, 75, 487.

(66) Peradejordi, F.Cah. Phys. 1963, 17, 343.
(67) Jano, I. Compt. Read. Acad. Sci. Paris1965, 261, 103.
(68) McRae, R. P.; Schenter, G. K.; Garrett, B. C.; Haynes, G. R.; Voth,

G. A.; Schatz, G. C.J. Chem. Phys. 1992, 97, 7392.
(69) Maroncelli, M.; Kumar, V. P.; Papazyan, A.J. Phys. Chem. 1993,

97, 13.
(70) Bruell, M.; Hynes, J. T.J. Phys. Chem. 1992, 96, 4068.
(71) Hynes, J. T. InUltrafast Dynamics of Chemical Systems; Simon, J.

D., Ed.; Kluwer: Dordrecht; 1994; p 345.
(72) Palmer, B. J.; Garrett, B. C.J. Chem. Phys. 1993, 98, 4047.
(73) Zusman, L. D.SoViet Phys. JETP1976, 42, 794.
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which yieldsτL ) 200 fs for water. Molecular dynamics simulations69-71

favor the faster values obtained from the Maroncelli et al. formula,
not the slowerτL value. However, Hwang et al.42 advocated obtaining
the solvation time from the autocorrelation of a diabatic energy gap
rather than the velocity autocorrelation function, and this leads to slower
values. Although the shorter (faster) times are more consistent with
experiment,68 as a sensitivity check we will also report calculations
based on longer (slower) solvation times. Making the solvent slower
need not increase the NES effects since slower solvents may couple
less strongly to the reactive modes in some cases.

For τ ) 10 fs, eq 14 gives a frequency of 417 cm-1, and forτ )
200 fs, it gives 21 cm-1. For comparison we note thatτ ) 8.5 fs yields
νj ) 491 cm-1.

2.3. Software. The dynamics calculations all employed direct
dynamics techniques,75 i.e., the energies, solvation free energies,
gradients, and Hessians were obtained as needed by electronic structure
calculations without the intermediate step of fitting a potential energy
surface or potential of mean force surface. The electronic structure
calculations employed the HF||AM1-SRP method and were carried out
with theGAMESOLRATEprogram,76 which is an interface of thePOLYRATE

dynamics code77,78 and theGAMESOL electronic structure code.79 The
rate calculations were carried with a modified version 8.2 ofPOLYRATE-
version 8.1,77 and the methods will eventually be available in later
version ofPOLYRATE. Dynamical participation factors were calculated
usingAMSOL80 for Scheme A andGAMESOL79 for scheme G.

3. Application to R1

Previously, we calculated the aqueous-solution rate constant
for the hydrogen atom abstraction from methanol molecule,
reaction R1, with two approximations, namely, the separable
equilibrium solvation (SES) and the equilibrium solvation path
(ESP) approximations.3 A linear mixing of Hartree-Fock and
AM1 with specific reaction parameters (HF||AM1-SRP) was
used to calculate the electronic energies, gradients, Hessians,
free energies, free-energy gradients, and free-energy Hessians
along the reaction path. The parameters of the HF||AM1-SRP

method are given in ref 3. After the gas-phase reaction rate
constants have been determined, CM2 and SM5.42R parameters
are needed for estimating partial charges, dipole moments, and
solvation energies; these parameters are discussed in ref 3. The
gas- and solution-phase reaction energetics are given in Table
1 for both the SES and ESP approximations.

In the present work, we estimate the nonequilibrium solvation
effects for reaction R1. As we discussed in the previous section,
the coupling constantCi is determined by the solvation time
(τ) and the effective atomic diffusion constants (Dk). In the
present work, we use the valueτ ) 10 fs which obtained by
Maroncelli et al. for most of our calculations; the dynamics
calculations are also carried with longer solvation times for
comparison.

We then need to estimate the atomic diffusion constants. The
first step, as explained in Section 2.2.1, is to specify the
prototype model. We use methane (D(proto) ) 1.5 × 10-5 cm2

s-1 in water)81 as a prototype for the C atom, water (D(proto) )
2.3 × 10-5 cm2 s-1 in water)82 as a prototype for the O atom,
andD(proto) ) 8 × 10-5 cm2 s-1 for the H atom.83 Dynamical
participation factors were calculated by the two schemes (A and
G) described in Section 2.2.1.

For scheme A, we then calculate the surface-accessible-area
of the hydrogen atom, saddle point, methanol, methane, and
water molecules at the SM5.42/HF||AM1-SRP level. The
surface-accessible-area and the calculated atomic diffusion
constants are given in Table 2. For scheme G, we obtain the
free energy of solvation of the prototype molecules/atom and
the saddle point at SM5.42/AM1-SRP level. The atomic
diffusion constants evaluated with scheme G are given in Table
3. We then carry out the dynamics calculations using a
prerelease version ofGAMESOLRATE-version8.1 with the same
dynamics parameters from the equilibrium solvation study
carried previously.

Although the parameterCi is called the “coupling constant”,
eq 8 shows that the coupling between the solvent coordinatey

(74) (a) Doubleday: C.; McIver, J. W. Jr.; Page, M.J. Phys. Chem. 1988,
92, 4367. (b) Baldridge, K. K.; Gordon, M. S.; Steckler, R.; Truhlar, D. G.
J. Phys. Chem. 1989, 93, 5107. (c) Garrett, B. C.; Koszykowski, M. L.;
Melius, C. F.; Page, M.J. Phys. Chem. 1990, 94, 7096. (d) For a review
see Truhlar, D. G. Understanding Chemical Reactivity 16. InThe Reaction
Path in Chemistry; Heidrich, D., Ed.; Kluwer: Dordrecht, The Netherlands,
1995; p 229.

(75) McConnell, J.Rotational Brownian Motion and Dielectric Theory;
Academic: New York, 1980.

(76) Chuang, Y.-Y.; Corchado, J.; Truhlar, D. G. GAMESOLRATE-
version 8.1, University of Minnesota, Minneapolis, 1999, based on
POLYRATE-version 8.1 and GAMESOL-version 2.2. [http://comp.che-
m.umn.edu/∼gamesolrate]

(77) Steckler, R.; Hu, W.-P.; Liu, Y.-P.; Lynch, G. C.; Garrett, B. C.;
Isaacson, A. D.; Melissas, V. S.; Lu, D.-h.; Truong, T. N.; Rai, S. N.;
Hancock, G. C.; Lauderdale, J. G.; Joseph, T.; Truhlar, D. G.Comput. Phys.
Commun. 1995, 88, 341.

(78) Chuang, Y.-Y.; Corchado, J. C.; Fast, P. L.; Villa`, J.; Coitiño, E.
L.; Hu, W.-P.; Liu, Y.-P.; Lynch, G. C.; Nguyen, K.; Jackels, C. F.; Gu,
M. Z.; Rossi, I.; Clayton, S.; Melissas, V.; Steckler, R.; Garrett, B. C.;
Isaacson, A. D.; Truhlar, D. G. POLYRATE-version 8.1, University of
Minnesota, Minneapolis, 1999 [http://comp.chem.umn.edu/polyrate].

(79) Li, J.; Zhu, T.; Hawkins, G. D.; Chuang, Y.-Y.; Liotard, D. A.;
Rinaldi, D.; Cramer C. J.; Truhlar, D. G. GAMESOL-version 2.2, University
of Minnesota, 1999, based on the General Atomic and Molecular Electronic
Structure System (GAMESS) as described in Schmidt, M. W.; Baldridge,
K. K.; Boatz, J. A.; Elbert, S. T.; Gordon, M. S.; Jensen, J. H.; Koseki, S.;
Matsunaga, N.; Nguyen, K. A.; Su, S. J.; Windus, T. L.; Dupuis, M.;
Montgomery, J. A.J. Comput. Chem. 1993, 14, 1347 [http://comp.che-
m.umn.edu/gamesol].

(80) Hawkins, G. D.; Giesen, D. J.; Lynch, G. C.; Chambers, C. C.;
Rossi, I.; Storer, J. W.; Li, J.; Zhu, T.; Rinaldi, D.; Liotard, D. A.; Cramer,
C. J.; Truhlar, D. G. AMSOL-version6.5.3, University of Minnesota,
Minneapolis, 1998 [http://comp.chem.umn.edu/∼amsol].

(81)Handbook of Chemistry and Physics; Lide, D. R., Ed.; CRC: Boca
Raton, FL,1994; p 6-253.

(82) Weingartner, H.Z. Phys. Chem. (Munich)1982, 123, 129.
(83) Bartels, D., private communication quoted in Garrett and Schenter.13

Table 1. Reaction Energetic and Structural Informationafor R1

theory Vq or Wqb ∆E or ∆Wc Rq
H-H Rq

H-C

best estimate (g)d 8-10e -5.1
HF||AM1-SRP (g)d 7.8 -5.0 0.867 1.277
HF||AM1-SRP (SES)f 7.5 -3.0 0.841 1.297
HF||AM1-SRP (ESP)g 7.5 -3.6 0.854 1.281

a Energies in kcal/mol, bond lengths in Å. The bond distances are
those for the making and breaking bonds.b Barrier height relative to
reactants (Vq for gas phase,Wq in liquid). c Energy of reaction, excluding
zero-point contributions, relative to reactants (∆E, which equals∆V,
for gas phase;∆W in liquid). d Gas-phase results.e Reference 3.
f Liquid-phase results with SES approximation.g Liquid-phase results
with ESP approximation.

Table 2. Atomic Diffusion Coefficients According to Scheme Aa

atomb Ak Ak
(proto) fk Dk

(proto) Dk

H 12.34 18.10 0.682 8.0 11.7
X 3.80 18.10 0.210 8.0 38.1
C 11.77 15.40 0.764 1.5 2.0
O 13.98 17.86 0.783 2.3 2.9
Y 8.13 18.10 0.449 8.0 17.8
Z 8.12 18.10 0.449 8.0 17.8
W 8.98 18.10 0.496 8.0 16.1

a Areas in Å2, diffusion coefficients in 10-5 cm2 s-1. b The labeling
of atoms corresponding to the reaction CXYZOW+ H f HX +
CYZOW.

τL ) n2

ε
τD (33)
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and solute coordinatexi is actually proportional to the product
FCi; this product is calledAi. For example, using eq 13, eqs 8,
11, and 12 can be written as

wherej ) 1, ..., 3N. Here,ω is the frequency of the pure solvent
mode, which according to eq 13, is inversely proportional to
the solvation time, andAj determines the coupling between
solute coordinatexi and solvent coordinatey. Thus, we will
perform some calculations in whichτ is varied at fixed values
of Ai.

The above considerations fix the parameters in the Hamil-
tonian. After that, the dynamics calculations proceed just as in
the equilibrium solvation path case except that there are 3N +
1 coordinates instead of 3N. We consider four levels of
dynamical theory:

These methods are all explained in detailed elsewhere,4,5,15,84-86

and therefore we limit ourselves to a one-sentence recap of each
method. The CVT approximation is based on finding the
dynamical bottleneck that has the maximum free energy of
activation; vibrations are quantized, but motion along the
reaction coordinate is classical. The CVT/ZCT approximation
includes tunneling along the minimum energy path (MEP). The
CVT/SCT approximation allows the tunneling paths to “cut the
corner”,87-89 but it confines the path within a hypercylindrical
tube centered on the MEP; the width of the tube in the direction
of any vibration is the distance between the zero-point level
classical turning points of that vibration, and the direction of
corner cutting is determined by the internal centrifugal force
due to curvature of the MEP. The CVT/µOMT approximation
allows the corner cutting path to leave the MEP tube and, if
more favorable, to correspond to a straight-line path90-92

(shortest possible path) in isoinertial coordinates. These methods
have all been validated against accurate quantum mechanical
calculations for few-body systems where accurate quantal
calculations are possible.93

Anticipating the results, we note that for the present reaction,
the µOMT result is almost the same as the large-curvature
limit,86,90-92 in which the tunnelingis most dominated by the
straight-line path since the reaction path curves back on itself
so strongly in isoinertial coordinates.

4. Results and Discussion

Our “best” calculation is the one with our highest dynamical
level, CVT/µOMT, and with our best estimates of the param-
eters, i.e.,τ ) 10 fs and scheme G forDk. This calculation
yields a 52% decrease in the reaction rate as compared to the
equilibrium solvation path (ESP) calculations. Since the ESP
calculations predicted a factor of 1.99 speedup as compared to
the gas-phase, the resulting prediction for the ratio of the rate
constant in the liquid phase to the rate constant in the gas phase
is 1.99× (1 - 0.52) ) 0.96, i.e., a 4% slowing down. This
still agrees with experiment within experimental error, since
the experimental result has been estimated to be a factor of 1.8
( (factor of 3), i.e., between 0.6 and 5.4, by us,3 and a factor
of 1.23 (without an error bar) by Mezyk and Bartels.94 (The
uncertainty in the experimental result is primarily due to the
uncertainty in the absolute value in the gas phase.) Next we
present results for several other choices of the parameters
because they increase understanding.

Figure 1 shows the effective potential along the nonequilib-
rium reaction path at 298 K. The effective potentialVeff is the
sum of the potential of mean force (W(x, y) in eq 3) and the
ZPE, i.e., it is the sum of the Born-Oppenheimer energy, the
standard-state free energy of solvation, and the ZPE. The
effective potential is shown for three different values of the
solvation timeτ. In this figure, we observe that the effective
barrier height for 10 fs is higher than that for 200 fs, which is
closer to the ESP limit, which is 5.59 kcal/mol at the ESP saddle

(84) Lu, D.-h.; Troung, T. N.; Melissas, V. S.; Lynch, G. C.; Liu, Y.-P.;
Garrett, B. C.; Steckler, R.; Isaacson, A. D.; Rai, S. N.; Hancock, G. C.;
Lauderdale, J. G.; Joseph, T.; Truhlar, D. G.Comput. Phys. Commun. 1992,
71, 235.

(85) Liu, Y.-P.; Lynch, G. C.; Truong, T. N.; Lu, D.-h.; Truhlar, D. G.;
Garrett, B. C.J. Am. Chem. Soc. 1993, 115, 2408.

(86) Liu, Y.-P.; Lu, D.-h.; Gonzalez-Lafont, A.; Truhlar, D. G.; Garrett,
B. C. J. Am. Chem. Soc. 1993, 115, 7806.

(87) Kuppermann, A.; Adams, J. T.; Truhlar, D. G. InElectronic and
Atomic Collisions; Cobič, B. C., Kurepa, M. V., Eds.; Institute of Physics:
Belgrade, 1973; p 149.

(88) Marcus, R. A.; Coltrin, M. E.J. Chem. Phys. 1977, 67, 2609.
(89) Skodje, R. T.; Truhlar, D. G.; Garrett, B. C.J. Chem. Phys. 1982,

77, 5955.
(90) Garrett, B. C.; Truhlar, D. G.; Wagner, A. F.; Dunning, T. H., Jr.

J. Chem. Phys. 1983, 78, 4400.
(91) Bondi, D. K.; Connor, J. N. L.; Garrett, B. C.; Truhlar, D. G.J.

Chem. Phys. 1983, 78, 5981.
(92) Truhlar, D. G.; Gordon, M. S.Science1990, 249, 491.
(93) Allison, T. C.; Truhlar, D. G. InModern Methods for Multidimen-

sional Dynamic Computations in Chemistry; Thompson, D. L., Ed.; World
Scientific: Singapore, 1998; p 618.

(94) Mezyk, S. P.; Bartels, D. M. J. Phys. Chem. 1994, 98, 10578.

Table 3. Atomic Diffusion Coefficients According to Scheme Ga

atomb ∆GS
0(k) ∆GS

0,(atom)(k) fk Dk
(proto) Dk

H 1.20 1.21 0.990 8.0 8.1
X -0.24 -0.38 0.634 8.0 12.6
C 1.40 1.61 0.870 1.5 1.7
O -3.22 -4.25 0.757 2.3 3.0
Y -0.33 1.37 0.242 8.0 33.1
Z -0.03 0.65 0.042 8.0 192.3
W -3.53 -22.30 0.158 8.0 50.5

a Free energy of solvation in kcal/mol, diffusion coefficients in 10-5

cm2 s-1. b The labeling of atoms corresponding to the reaction CX-
YZOW + H f HX + CYZOW.
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CVT4,5,15 canonical variational transition
state theorywithout tunneling

CVT/ZCT4,5,15CVT with zero-curvature tunneling

CVT/SCT82,83CVT with small-curvature tunneling

CVT/µOMT84 CVT with microcanonical optimized
multidimensional tunneling
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point and 5.75 kcal/mol at the 298 K ESP variational transition
state. This might appear counterintuitive (we expect to reach
the equilibrium limit for fast solvent, not slow solvent) until
one realizes that the coupling strength is varied if one variesτ
with fixed Dk, as was done in Figure 1. In particular, eqs 6 and
7 show that the coupling strengthFCi varies asτ-3/2 whereτ is
varied at fixedDk, and this explains why the equilibrium limit
is achieved for largeτ in this kind of plot.

To examine the dependence of the reaction rate constants on
the solvation time (τ) for a fixed strength of the solute coupling
to the bath, we used the substitutions introduced in the previous
section (eqs 34, 35, and 36), and we variedτ at fixed Ai. The
fixed Ai are chosen to be the product of the originalF value
original Ci calculated withτ ) 10 fs and with the diffusion
coefficients obtained from scheme G. Figure 2 shows the ratio
of the rate constants evaluated using the NES approximation to
the rate constants evaluated with the ESP approximation. This
ratio tends to 1 asτ tends to zero when we keep the coupling
Ai constant. This validates the physical nature of the present
formulation because it agrees with the physical picture that if
the solvation time becomes smaller, the solvent molecules
reorganize faster to accommodate the sudden change in the
environment, and therefore the reaction rate constant tends to
the equilibrium solvation limit. However, if the solvent mol-
ecules require more time to reorganize, the nonequilibrium
solvation effect becomes more important. For example, Figure
2 shows that forτ g 25 fs, the rate constant evaluated using
the NES approximation is more than a factor of 30 smaller than
the ESP rate constant.

The choice ofτ affects not only the reaction coordinate but
also the bound motions of the solute molecule. This is illustrated
in Figure 3, where, for discussion purposes, we show the
frequencies at the liquid-phase saddle point as a function ofτ
(again τ is varied with fixedAi); Figure 4 shows the corre-
sponding variation in the ZPE. At the left-side of Figure 3 (τ )
1 fs), the solute frequencies are basically the same as forτ )
0 fs, and the solvent frequency is∼4200 cm-1, which is∼800
cm-1 larger than the largest solute frequency. This gap prevents

significant solute-solvent mode mixing. Forτ < 1 fs, the gap
will be even larger since eq 13 shows that the pure solvent mode
frequency is inversely proportional toτ. This explains whykNES/
kESP≈ 1 for τ e 1 fs in Figure 2. Then, asτ increases, it passes
through the solute frequencies and mixes with them; Figure 3
shows this process. Atτ ) 5 fs, the solvent frequency has
decreased to∼800 cm-1, and forτ ) 5-10 fs it mixes strongly
with the low-frequency modes of the solute. Whenτ >̃ 25 fs,
the frequencies of the bound modes become much larger, which
makes the free energy barrier much higher than the one obtained
from the ESP approximation and results in a smaller reaction
rate constant. Figure 5 gives a different perspective on solvent-
solute mode mixing. It shows how the solvent mode gets pushed
down in frequency by coupling to the solute forτ >̃ 5 fs; this
in turn increases the other frequencies. This figure dramatically
illustrates how the solvent mode mixes strongly with the solute
modes forτ > 5 fs.

Recall that the solvent bath is coupled to the Cartesian
coordinates of the solute molecule in our formalism. A possible
improvement is to couple the bath mode to each of the normal
modes of the solute molecule differently; however, this might
require more parameters to represent the coupling.

Tables 4 and 5 and Figure 6 show how the aqueous-solution
rate constants and their ratios to gas-phase ones depend on the
effective atomic diffusion coefficients whenτ ) 10 fs. In the
tables, Dk

A denotes the diffusion constants obtained from
scheme A for the dynamical participation factors;Dk

G denotes
those from scheme G. Furthermore,Dk

G/2 means that the
atomic diffusion constants are taken as the half of theDk

G

values, and 2Dk
G means that the atomic diffusion constants are

taken to be twice theDk
G values.

First, consider the comparison of results obtained withDk
A to

those obtained withDk
G (rows 3 and 6 of Tables 4 and 5). It is

encouraging the results withDk ) Dk
A agree well with those for

Dk ) Dk
G because this shows that the model is not overly

sensitive to the method used to estimate dynamical participation
factors.

Next, consider the dependence on scalingDk. From eq 7 we
see that the coupling constant is inversely proportional to the
diffusion constants as is the coupling strengthAi; therefore,
Tables 4 and 5 are showing the aqueous solution rate constants

Figure 1. Effective potential along the nonequilibrium reaction path
of R1 minus effective effective potential at reactants for three values
of the solvation time. The solid curve is forτ ) 10 fs, the dotted curve
is for τ ) 20 fs, and the dashed curve is forτ ) 200 fs. All calculations
are carried out with the diffusion coefficients evaluated using scheme
G. Thus, in the figure, the coupling strength varies with changes inτ
according to eq 7.

Figure 2. RatiokNES/kESPas evaluated by conventional transition state
theory. The curve is a polynomial fit. These calculations were performed
with constantAi which is evaluated usingτ ) 10 fs and the diffusion
constants obtained from scheme G.
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increase when the coupling strengths decrease at fixedτ.
Eventually, they reach the zero-coupling limit, which is the ESP.
In the other direction, as theDk decrease and the coupling
strength increases, the calculated rate constants tends to zero.
These two trends are precisely as expected, and they confirm
again that the theory behaves in a physically realistic fashion.

Typically the inclusion of dynamical coupling to the solvent
decreases the tunneling effect as solute-solvent coupling
increases. This has been explained by McRae et al.52 as follows.
When solute-solvent coupling is important, the tunneling-path
length though all the coordinates is larger than the path length

through the solute coordinates alone because the solute “drags”
along the bath modes. Thus, the barrier in the mass-scaled
coordinate system is effectively widened. The present paper
provides the first information about the effect of nonequilibrium
solvation on full multidimensional tunneling calculations. Tables
4 and 5 show that the nonequilibrium solvation effect is very
similar, independent of whether tunneling is included and
whether it is constrained to the small-curvature tube around the
MEP. For example, using our best parameters, the nonequilib-
rium solvation effect is a factor of 0.42 at the CVT dynamical

Figure 3. Frequencies of motions transverse to the reaction coordinate for a series of calculations in whichτ is varied withAi fixed as in Figure
2. The frequencies are evaluated at the ESP saddle point location.

Figure 4. Nonequilibrium solvation effect on the ZPE at the ESP
saddle point evaluated with different solvation timesτ with Ai fixed as
in Figure 2. The solvent modes are included for estimating the ZPEs.

Figure 5. Like Figure 3 except only two modes are shown: the solid
curve is the uncoupled bath mode frequency of eq 13, and the dashed
curve is the coupled bath mode, i.e., the mode from the NES calculation
whose eigenvector has the highest contribution from the bath coordinate.
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level, 0.41 for CVT/ZCT, 0.39 for CVT/SCT, and 0.48 for CVT/
µOMT. Tables 4 and 5 show that similar ratios for CVT and
CVT/µOMT persist whenDk is large (weak solute-solvent
coupling), but large-curvature tunneling begins to be effected
differently from overbarrier reaction or small-curvature tunneling
when the solute-solvent coupling increases. For example, when
all effective atomic diffusion coefficients are divided by 4, the

nonequilibrium effects are 0.054-0.058 the CVT, CVT/ZCT,
and CVT/SCT levels, but 0.16 at the CVT/µOMT level. This
is somewhat contrary to the lore of the field where nonequi-
librium solvation effects are sometimes guessed to be larger
when tunneling effects are larger.

Table 4 includes conventional transition state theory. The
primary point to be made about those results is that they differ
from our best results, again underscoring that conventional
transition state theory does not provide reliable estimates of
absolute rate constants.85 From Figure 5, we notice that the ratio
of the NES rate constant to the gas-phase rate constant increases
as the diffusion constants increase. As mentioned above, the
experimental value of this “speed up” was estimated to be 1.8
by us3 and 1.2 by Mazyk and Bartels.94 In Figure 5, we also
notice that the inclusion of the large-curvature-tunneling
contribution improves the calculated ratio.

It is interesting to consider two kinetic isotope effects (KIEs),
namely, (i) D+ CH3OD f DH + CH2OD and (ii) H+ CD3-
OH f HD + CD2OH. The corresponding KIEs are denoted as
(i) kHH/kDH and (ii) kHH/kHD, where the first index means the
attacking species and the second index means the transferred
species. Table 6 gives the calculated KIEs for (i), and Table 7
gives the calculated KIEs for (ii). As the diffusion constants
increase, the value of the KIE kinetic tends to the ESP limit
due to a decrease in the coupling between the solvent and solute
coordinates. The experimental estimation of the KIEs for (i) is
0.7 by Lossack et al.95 and for (ii) is 20 by Anbar et al.96

(95) Lossack, A. M.; Roduner, E.; Bartels, D. M.J. Phys. Chem. A 1998,
102, 7462.

Table 4. Aqueous Solution Rate Constantsa of Reaction R1 at 298
K

level τb Dk TSTc CVT ZCTd SCTe µOMTf

SES 1.7 0.9 2.4 8.7 12.7
ESP 0 ∞ 2.2 1.9 4.8 16.6 25.9
NES 10 Dk

A 0.79 0.71 1.7 5.6 11.5
NES 10 Dk

G/4 0.12 0.12 0.28 0.89 4.1
NES 10 Dk

G/2 0.42 0.39 0.95 3.1 7.0
NES 10 Dk

G 0.90 0.81 2.0 6.5 12.4
NES 10 2Dk

G 1.4 1.2 3.0 10.1 17.7
NES 10 4Dk

G 1.7 1.5 3.8 12.9 21.1
NES 10 8Dk

G 2.0 1.7 4.2 14.5 23.1
NES 10 16Dk

G 2.1 1.8 4.5 15.4 24.1
NES 10 20Dk

G 2.1 1.8 4.6 15.6 24.3

a Rate constants in 10-15 cm3 molecule-1 s-1. b Solvation time in fs.
c Conventional transition state theory.d CVT/ZCT. e CVT/SCT. f CVT/
µOMT.

Table 5. Speedup (kSolution/kGas) of R1

level τa Dk TSTb CVT ZCTc SCTd µOMTe

SES 1.49 1.19 1.21 1.05 0.98
ESP 0 ∞ 1.96 2.73 2.41 1.99 2.01
NES 10 Dk

A 0.71 1.00 0.85 0.67 0.89
NES 10 Dk

G/4 0.10 0.16 0.14 0.11 0.32
NES 10 Dk

G/2 0.37 0.55 0.48 0.37 0.55
NES 10 Dk

G 0.80 1.14 0.99 0.78 0.96
NES 10 2Dk

G 1.22 1.72 1.50 1.21 1.37
NES 10 4Dk

G 1.54 2.15 1.88 1.55 1.64
NES 10 8Dk

G 1.74 2.42 2.11 1.74 1.79
NES 10 16Dk

G 1.85 2.56 2.25 1.85 1.87
NES 10 20Dk

G 1.88 2.60 2.28 1.87 1.88

a Solvation time in fs.b Conventional transition state theory.c CVT/
ZCT. d CVT/SCT. e CVT/µOMT. We notice that in all cases the CVT/
µOMT result, are within 2% the large-curvature82 limit.

Figure 6. The ratiokNES/kgasas a function of the scaling of the atomic
diffusion constants. All calculations for the figure were carried out with
τ ) 10 fs.

Table 6. Kinetic Isotope Effects (kHH/kDH) at 298 K in Aqueous
Solutiona

level τb Dk TST CVT ZCTc SCTd LCTe µOMTf

SES 0.44 0.27 0.53 0.81 0.53 0.48
ESP 0 ∞ 0.39 0.34 0.60 0.91 0.51 0.51
NES 10 Dk

A 0.27 0.24 0.41 0.60 0.49 0.49
NES 10 Dk

G/4 0.17 0.17 0.27 0.39 0.25 0.25
NES 10 Dk

G/2 0.23 0.22 0.36 0.53 0.34 0.34
NES 10 Dk

G 0.29 0.26 0.44 0.66 0.37 0.37
NES 10 2Dk

G 0.33 0.29 0.50 0.76 0.42 0.42
NES 10 4Dk

G 0.35 0.31 0.53 0.80 0.44 0.44
NES 10 8Dk

G 0.36 0.32 0.55 0.84 0.44 0.44
NES 10 16Dk

G 0.37 0.33 0.56 0.85 0.46 0.46
NES 10 20Dk

G 0.38 0.34 0.58 0.87 0.49 0.50

a The experiemental KIE is 0.7,kHH/kDH ) k(H + CH3OH)/k(D +
CH3OD). b Solvation time in fs.c CVT/ZCT. d CVT/SCT. e CVT/LCT.
f CVT/µOMT.

Table 7. Kinetic Isotope Effects (kHH/kHD) at 298 K in Aqueous
Solutiona

level τb Dk TST CVT ZCTc SCTd LCTe µOMTf

SES 10.3 10.9 10.3 14.6 28.3 21.3
ESP 0 ∞ 10.3 10.7 9.50 13.3 26.6 20.2
NES 10 Dk

A 8.13 8.47 7.35 10.1 23.1 18.6
NES 10 Dk

G/4 6.19 6.93 6.11 8.42 17.9 16.8
NES 10 Dk

G/2 7.69 8.30 7.27 10.0 22.3 18.9
NES 10 Dk

G 8.77 9.23 8.18 11.3 24.2 19.5
NES 10 2Dk

G 9.45 9.84 8.69 12.2 25.7 20.2
NES 10 4Dk

G 9.76 10.1 8.92 12.5 25.8 20.1
NES 10 8Dk

G 9.95 10.3 9.10 12.7 25.8 20.1
NES 10 16Dk

G 10.1 10.4 9.21 13.0 25.9 19.9
NES 10 20Dk

G 10.2 10.6 9.36 13.0 26.0 19.8

a The experiemental KIE is 20,kHH/kHD ) k(H + CH3OH)/k(H +
CD3OH). b Solvation time in fs.c CVT/ZCT. d CVT/SCT. e CVT/LCT.
f CVT/µOMT.
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5. Concluding Remarks

Many recent advances in transition state theory have gener-
ated an appreciation of the role of nonequilibrium solvation and
solvent friction on the rates of chemical reactions,7,16 but so far
there has been no framework for incorporating these effects into
practical direct dynamics calculations of liquid-phase reactions.
In this paper, we have presented a method for calculating
nonequilibrium solvation effects on liquid solution rate constants
by variational transition state theory with multidimensional
tunneling (VTST/MT); the method is applicable even for large-
curvature corner-cutting tunneling paths. The method is general
from the point of view of the number of atoms and type of
potential function for the solute and from the point of view of
type of tunneling path, but it is limited to the linear response
regime for solute-solvent coupling. We applied this treatment
to a free radical reaction in aqueous solution that has previously
been studied both experimentally94-96 and theoretically.3 In this
treatment, the 3N solute Cartesian coordinates are coupled
multilinearly to a collective solvent coordinatey based on the
generalized Langevin equation. Unlike previous calculations in
the literature (except ref 42), the collective solvent coordinate
is coupled dynamically to all degrees of freedom of the solute.
We use the WilsonGF matrix method with redundant internal
coordinates to separate the vibrational and rotational motion of
the solute. To calculate the coupling constants between the
solvent and solute coordinates, it is required to estimate the
solvation time and the effective atomic diffusion constants. Two
schemes are proposed to approximate the atomic diffusion
constants; one is based on the solvent-accessible surface area
and the other is based on the free energy of solvation. The latter

is a better justified approximation due to the nature of the
solute-solvent long-range forces. The solvation time can be
obtained from the velocity autocorrelation function generated
from a molecular dynamics simulation or estimated based on
the dipole moment, moments of inertia, density, dielectric
constant, and temperature of the polar solvent. The ratio of the
aqueous solution rate constant to the gas-phase rate constant
depends on the solvation time and the effective atomic diffusion
constants. We find that when the effective diffusion constants
increase, the reaction rate tends to the no-coupling limit, which
is equivalent to the equilibrium solvation path result. The kinetic
isotope effects of R1 are also studied by using the same friction
and diffusion parameters for the H and D atoms.

6. Summary

In the present work, we have presented a general linear-
response method to treat nonequilibrium solvation effects that
is applicable to polyatomic systems and can easily be extended
to arbitrarily large solutes. We have used the new method to
predict that nonequilibrium solvation is significant for a real
bimolecular reaction of neutral species, in particular lowering
the rate constants by a factor of 2 for H+ CH3OH. The
calculations presented in this paper show generally good
agreement with the experimental values, and they lead to insight
into the factors affecting the magnitude of the nonequilibrium
frictional effect.
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