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Abstract: We present a general linear-response method for including nonequilibrium solvation effects (solvent
friction effects) in variational transition state theory with multidimensional tunneling (VTST/MT) for calculating
reaction rate constants in solution. The generalized Langevin approach is used to include a collective solvent
coordinate into VTST/MT, and a general prescription is suggested for coupling this collective solvent coordinate
to the solute, which is treated in its full dimensionality. The new formalism is illustrated by application to the
aqueous free radical reaction-H CH;OH — H, + CH,OH at 298 K. This reaction is treated with a linear
mixing of Hartree-Fock theory and Austin Model 1 with specific reaction parameterq|@&\¥F1-SRP). The

results with nonequilibrium solvation (NES) are compared to those obtained earlier with the separable equilibrium
solvation (SES) and the equilibrium solvation path (ESP) approximations. We focus on the speedup due to
solvation and on the kinetic isotope effects (KIEs). We calculate that nonequilibrium solvation decreases the
rate constant by a factor of 2 but changes the KIEs by less than 2%. We also present results that show how
the nonequilibrium effect depends on the solvation time and the strength of the-ssmistent coupling.

1. Introduction for treating arbitrary systems including all degrees of freedom
of the solute.

Central to the hierarchy of methods employed in this work
is the division of the system into an explicit subspace and an
implicit bath. In general, for aN-atom solute, one can calculate
equilibrium solvation (ES) rate constants (either SES or ESP)
by treating the Bl solute coordinates explicitly and taking all
of the solvent coordinates as impliéit.121416 This requires
the potential of mean forééW(x) in the N-dimensional space
x of solute coordinates. From a dynamical perspective, this
treatment can include full solute anharmonicity and nonlinear
solute-solvent coupling, although in practical work one might
) ) use local harmonic approximations for the solute or assume
in aqueous solution. linear response of the solvent at various stages of an actual

The present paper extends these methods to include the effecgaiculation.
of nonequilibrium solvation (NES) on reaction rates, a subject  To introduce NES effects one must dynamically determine
that has received considerable attention in recent yeahe the extent and nature of solvent participation in the reaction

present extension builds on methods presented previously in acoordinate!®° One can do this by selectimg solvent coordi-
number of paper,13 and it provides a systematic framework

We have recently presenfed general procedures for cal-
culating reaction rates in solution by variational transition state
theory with multidimensional tunnelifig® (VTST/MT) under
the assumption of an equilibrium solvation path (ESP) or the
simpler assumption of separable equilibrium solvation (SES).
We illustrated these methods in ref 2 for two ionic reactions,
and in a subsequent papeve applied them to the free radical
reaction

H + CH,OH— H, + CH,OH (R1)
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nates on a physical basis; these solvent coordinates may beium term Guyeg(X, y) is modeled using linear response (LR)
Cartesian coordinates of individual solvent atoms, but, to be based on the generalized Langevin equation witbollective

realistic, such an approach often requires very lang&€hus, it

solvent coordinate¥.~32 Only in the limit of m — « (or some

is often preferable to use one or more collective solvent number of the order of magnitude of the number of atoms in a
coordinates, e.g., a coordinate representing the solvent electrianacroscopic system) can this treatment truly mimic a dissipative

polarization field®1%.20-23 Provided one can calculate the correct
potential of mean forcev(x, y), wherex denotes the solute
coordinates, andy denotes the set ofm selected solvent

solvent. Nevertheless, one can sometimes get a good quantitative
approximation to then = o limit with m as small as %° The
adequacy of restricting the number of effective solvent coor-

coordinates, such a treatment can be exact if all implicit solvent dinates to be small is problem depend&riut m = 1 clearly

coordinates (the orthogonal complementydh the full set of

solvent coordinates) are at equilibrium, and, in a classical world,
it can provide a variational transition state upper bound even if

they are not® This observation provides one possible starting
point for a variational transition state theory of reactions in
solution that includes nonequilibrium solvation.
In the present paper we restrict ourselvesnte= 1, so that
y reduces to a scalar variabje Furthermore we write
— 0
W(x, y) = W(X) + AGedX, Y) 1)
whereW(x) is the usual potential of mean force for solute oHly,
and AGJc4(x, y) is the nonequilibrium contribution to the
standard-state free energy of solvation. We may also fwrite

W(X) = V(x) + AGY(X) )

provides a logical starting point for exploratory studies of
nonequilibrium effects.

Not only will we examine improving on the equilibrium
solvation result by including nonequilibrium solvation through
Gneg(X, Y), but also we will consider approximating the full
equilibrium solvation result by the separable equilibrium sol-
vatior? approximation. Thus our hierarchy of methods has three
tiers: (i) separable equilibrium solvation, denoted SES, in which
free energies of solvation are added to a gas-phase reaction path
(ii) (full) equilibrium solvation, denoted ESP (for equilibrium
solvation path) to denote that the reaction path or perhaps just
the critical configuration along the reaction path is optimized
in the presence of equilibrium solvation forces, and (iii)
nonequilibrium solvation, denoted NES. Since we employ a
formulation of variational transition state theory with multidi-
mensional tunneling contributions in terms of reaction péths,
it is useful to point out here that the SES calculation is based

where V(x) is the gas-phase potential energy surface, and On the gas-phase reaction p&thi® denoted GRP, which is

AGg(x) is a free energy of solvation for constrained values

based on the gas-phase potential energy suxMégeand passes

of the solute coordinates. Then, if desired, we can regroup thethrough the gas-phase saddle point. In contrast the ESP

terms as

W(X, Y) = V(X) + AGRe(X, ) 3)

where

AGRe(x, Y) = AGY(X) + Gyed(X, ¥) (4)
and AGy(x) denotes the standard-state nonequilibrium free
energy of solvation. The equilibrium tem;Gg(x) is calculated

by an SM5-class solvation modf,2” which includes a linear-
response treatment of electrostatfand a general (nonlinear)
treatment of first-solvation-shell effect&and the nonequilib-
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calculation involves a reaction path based/gx); this reaction

path (like the dynamics calculations based on it) is called the
equilibrium solvation pat¥ (ESP). Finally, the NES calculation
involves a reaction path through @3- m)-dimensional space

(in the present paper, we hawe= 1, but the theory is more
general); this reaction path is based \M¥, y) and is called

the nonequilibrium solvation path or NESP. Any of these
reaction paths may be defined by the steepest-descents
prescription?3-38 if desired, i.e., one may use the minimum-
energy path from reactants-to-products\éw), W(x), or w(x,

y) (more generally(x, y)).
Section 2 presents the theoretical formulation of nonequilib-

rium solvation effects used here. Section 3 give details of an
application to reaction R1. Section 4 presents the results and
discussion, and Section 5 contains concluding remarks.

2. Theory

There have been numerous attempts to include nonequilibrium
solvation effects in the transition state theory of condensed-phase
reactiong 13233753 |n the present work, we will use the generalized
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Nonequilibrium Salation Effects

Langevin approach with the single-oscillator approximation of Garrett
and Schente¥ and we will show how it can be used in conjunction
with a full variational transition state theory calculation including
optimized multidimensional tunneling.

2.1. Hamiltonian. To include nonequilibrium solvation effects we
add a solvent coordinateusing the approximation of a single harmonic

oscillator linearly coupled to the reaction coordinate. In this approxima-
tion the Hamiltonian for calculating the free energy of the generalized

transition states becomes

2

H =T, uet W) + % + % F(y — CT(x — x%)? (5)

wherex denotes the solute mass-scaled Cartesian coordinates (in terms

of which we may write the reaction coordina@nd the other solute
coordinates)x*denotes the equilibrium solvation saddle point values
of the solute coordinatey,is an effective solvent coordinatg is its
conjugate momentumlseue IS the solute’s kinetic energyV is the

potential of mean force (equal to the gas-phase potential plus the

equilibrium free energy of solvation for thaj, « is the scaling mads
(which must and will cancel out and have no effect on the resuts),
is a bath force constan€ is a solute-bath coupling vector witiN3
component<; (whereN is the total number of atoms), affddenotes

a transpose. Following Garrett and Sche#tehe bath parameteis
andC; are determined from an analytic expression for the friction kernel
which is in a Gaussian form. Therefore, the force constant is

2
Ja U
" 167 ©
and the elements of the coupling vector are
160kt [—A%)|M?
i=7rwx§9 )
7D

wherek is Botzmann’s constant; is temperaturer is the solvation
time (which iso in ref 13), andD; is the diffusion constant of the atom
ki corresponding to Cartesian coordinat8ince the reactant free energy
is an equilibrium quantityC; is set equal to zero at reactants for
calculating reactant free energies.

Note that although eqs-57 do not explicitly involve electrostatics
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electrostatics and first-solvent shell effects when we estimate numerical
values forC; andt as discussed in Section 2.2.
From eq 1, we can write the effective potential as

1 3N
Wix,Y) = W0 + SR = 5 G0 = X))’ (8)
Note that we can solve for the equilibrium valug of y by
9 3N
0=—w—qu—ﬁf¥M )
ay =
Therefore,
3N
Yea= p Ci (%= %) (10)

Thus the last term in eq 5 can be written'a8(y — Yo% As stated
above,C is nonzero only for calculating fluxes (e.g., free energies of
transition states, which are quasi-equilibrium quantities, not true
variables of equilibrium thermodynamics), not for calculating equilib-
rium properties such as reactant free energies.

From eq 8, we can express thea\(3- 1)-dimensional gradient as

W 3N .
——GFy— ) Gk —x))
9%

vw = : (11)
3N
Fiy =y Cx = %)
&
wherej = 1, ..., A. The Hessian matrix can be written as
2
I 4 Feg - —FC
vaw = | %% (12)
_FCj =
wherei, j = 1, ..., . Notice that in the limit of zero couplingd=

0), the Hessian matrix is reduced to a block diagonal form of\ax3
3N) matrix and a force constant obtained from the collective solvent
coordinate. In this case, the vibrational frequencies of the solute are

(e.g., the solute dipole moment and partial atomic charges do not the same as the ESP approximation plus a “pure” solvent mode of

appear), the quantitiasandD; result from the collective operation of
all solute-solvent forces, and hence the “correct” values of these
guantities implicitly include electrostatics, hydrogen bonding, electron
correlation, and so forth. In fact we will explicitly take account of
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frequency (in radians)

_(F\2_=x
w= (ﬁ) =z (13)
In wavenumbers this is
p= -1
VT 2nc 8cr (14)

The generalized transition state vibrational partition functions along
a reaction path arise from motions in a space orthogonal to overall
translation and rotation and to the reaction coordiddtkese motions
may be separated (to first order) by constructing a Cartesian projection
operatot* that describes the overall translation, rotation, and reaction
coordinate direction motion of the solute molecule, and then applying
this operator to “filter” these motions from the force constant matrix.
Alternatively one may describe the vibrational motion in terms of
curvilinear internal coordinates by applying the Wils@# matrix
method>%¢to transform the force constant matrix of eq 12 into internal
coordinate$®> %8 projecting out the reaction coordinate direction in

(54) Miller, W. H.; Handy, N. C.; Adams, J. B. Chem. Phys198Q
72, 99.

(55) Wilson, E. B., Jr.; Decius, J. C.; Cross, PMulecular Vibrations
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1996 104, 6491.
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internal coordinate®,and then transforming the force constant matrix other modes at the reactants and products, but instead has the uncoupled
back to Cartesian coordinates. Both of these methods result in afrequency? of eq 13 or 14. This frequency is also used in interpolation
projected force constant matrix in terms of Cartesian coordinates which schemes (such as dual-le¥ednd mapped IVTSH calculations).
may then be used to evaluate the vibrational frequencies. In the present  The solute-solvent coupling potential in eq 5 is an approximation
work, we use the latter method to project out the translational, rotational, to a more general expressi##°3L52This model is very general, but
and reaction coordinate direction. The curvilinear coordinate method gther more specific models may allow more physical low-order
is more physical for most cases in the gas plt&s€and for the same  modeling in individual cases. For example, Hynes and co-workers have
reason it should be more physical for most cases in liquid solution.  considered a variety of models for generalized Langevin equations,
We can express the potential of mean fondg) in eq 2 as a Taylor  attempting to capture the physics of solvent motion more completely
expansion in terms of the displacements of atomic Cartesian coordinatesor specific case® In ref 11, a general set of effective solvent
X from a reference SthCtUDéJ coordinates was defined, and expressions for the effective force constant
- L inf terlmst_of the geger_alizdecjrﬁorn modfl of(;hle'electrostlatic con;];ior:entt
of solvation were derived. The present model is general enough to trea
W= W+ zGi(Xi —x)+ EZFiJ'(Xi n Xio)(xi - on) .. (19) cases where the dominant coﬂpling mechanisr% is electrostgatic (e.q.,
' " dipolar), but it is more general and is also applicable for other
mechanisms of solutesolvent coupling. There could be advantages
in focusing on electrostatic mechanisms in some cases, when the more
F 3N general formalism may be appropriate in others. Hwang & leve
W= W, + zgi(qi _ Qio) + 1/22fij(qi _ qio)(qj _ q,-o) + ... (16) _prese_nted a model that in_cludes nqneguilibrium_solvat_ion without
T o involving a separate calculation of equilibrium solvation. This was done
by searching for the transition state in a combined selstdvent space
whereF' denotes total number of the internal coordinate3\ — 5) which accounts explicitly for solvent-induced dipoles.

for linear moleculesz (3N — 6) for polyatomic molecules, with the 2.2. Solvent ParametersThe present model for nonequilibrium

equality for nonredundant internal coordinates and the inequality for so|yation effects involves two kinds of parameters, a coupling strength
redundant internal coordinates). Also, a curvilinear internal coordinate 54 5 solvation time.

g can be expressed as a power series in Cartesian displacement
coordinates;

or in terms of the displacements of curvilinear internal coordingtes

pomop =L =10, N (18)

2.2.1. Coupling Strength and Dynamical Participation Factors.
The coupling strength is determined from eq 7, in whizhs treated
3N 3N as an effective diffusion constant for atdm(wherei is one of the
o S 1 VN _ Cartesian coordinates of atok). The effective diffusion constant is
G ]zB” 05 = %) + /ZJZC’k(X] 06+ (17) determined from a prototype diffusion constant that gauges the intrinsic
' strength of solute solvent coupling for a given type of solute fragment
in which Bjj is an element of the WilsoB matrix in a given solvent and from a dynamical participation factor that gauges
the actual exposure of the given atom of the solute to solvent at a
_ aq; particular solute geometry. A small, effective diffusion constant of atom
Bj = & or fragment X in solvent S corresponds to strongXcoupling, but
if X is only partially exposed to solvent at the transition state (due to
andC iy is an element of the tens@ being buried by the rest of the molecular structure), then thesX
coupling in that situation is smaller. The dynamical participation factors
i aq; ] ) may be calculated from solvent-accessible surface &féasn electric
Ci= z»g_axk = =L Rl k=1, N (19) polarization fractiong? or from atomic contributions to free energies
of solvation. Using solvent-accessible surface area emphasizes the
(The Ci tensor should not be confused with the coupling vector of eq shortest_—range interactions, and using electric pqlarization fract_ions
7.) The algorithms for evaluating the generalized normal mode emph§3|zes _the longer-range ones, whereas using free energies of
vibrational frequencies using WilsdBF matrix method are described ~ Solvation weights both types of contributions. We will present results
in detail in previous papef&seIn present work, using method (ii), we based on both surface areas and free energies to test the sensitivity to
take Ge1 = y, and we only need to extend the dimensions ofBhe ~ SUCh choices.
matrix andC' tensor by 1 for the extra degree of freedom (the solvent ~ The coupling strength for atork is determined from a prototype
coordinatey) and give a value to the B+ 1, 3\ + 1) element of the diffusion constant multiplied by a participation fractibnm We define
diagonal reciprocal mass ten¥oe. We assign values to the elements  the effective diffusion constarid, for atomk in the solute by
of B andC' by assuming that the collective solvent coordinate remains
“pure” when we transform from the redundant or nonredundant internal D = fkle(kprmO) (20)
coordinate system to Cartesian coordinates. This corresponds to taking
the F + 1, 3N + 1) element of theB matrix, which indicates the
(ayldy) derivative, equal to 1; and the other elements in the last row Where D™ is the diffusion constant of a prototype model, for
and column of8 and of the values of the elements in the extended example, D™ of a hydrogen atom is taken the atomic hydrogen
parts of theC' tensors are set equal to zero. As a result, a “solvent diffusion constantD(kp“’“’) of a carbon atom in an alkyl group may be
mode” with a large contribution fromin the eigenvector is observed  taken as the diffusion constant of methane, aﬁjﬁ"o) of a hydroxylic
after diagonalizing the projected Hessian matrix. Weuset: av+1 equal oxygen atom is taken as the diffusion constant of water. We consider
to the scaling mags introduced in eq 5. (When this is done the resulting  two schemes for estimatirfg
rate constants are independentofas they should be.) There is In scheme A we use the solvent-accessible surfac&akeaf atom
considerable flexibility in defining internal coordinates, and these | 1hus
choices seem intuitive.

To_ carry out dynamics cglculations, we have to _add_a pure squent (60) (a) Hu, W.-P; Liu, Y.-P.; Truhlar, D. GI. Chem. Soc., Faraday
contribution to the zero-point energy (ZPE) and vibrational partition Trans 1994 90, 1715. (b) Chuang, Y.-Y., Truhlar, D. G. Phys. Chem.
functions of the reactant and product. Unlike the saddle point and A 1997 101, 3808;1997 101, 8741(E). (c) Chuang, Y.-Y.; Corchado, J.
generalized transition states, the solvent mode is not coupled to theC.; Truhlar, D. G.J. Chem. Phys1999 110, 550.

(61) Corchado, J. C.; Coitm E. L.; Chuang, Y.-Y.; Fast, P. L.; Truhlar,

(58) (a) Chuang, Y.-Y.; Truhlar D. G. Chem. Physl997 107, 83. (b) D. G. J. Phys. Cheml1998 102 2424.

Chuang, Y.-Y.; Truhlar, D. GJ. Phys. ChemA. 1998 102 242. (62) Lee, B.; Richards, F. Ml. Mol. Biol. 1971 55, 379.

(59) Natanson, G. A,; Garrett, B. C.; Truong, T. N.; Joseph, T.; Truhlar, (63) Cramer, C. J.; Truhlar, D. @hem. Phys. Letl992 198 74;1993

D. G.J. Chem. Physl991, 94, 7875. 202 567(E).
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f = mm{ AJA‘J""‘”} 1) AGerlX) = AEE() + Gol) (31)

. . . where AEg(x) is the change in the internal electronic kinetic and
whereAis the solvent-accessible surface area of akdmthe solute Coulombic energy of the whole solute upon equilibrium solvation b
under consideration at the solute geometry under consideration, and 9y P d y

Akpmw)is the solvent accessible surface area of somthe prototype. the solvent,Gp(x) is the whole electric polarization free energy, and

Gp(k X) is the part ofGp that is attributable to atork. The latter is
Scheme A seems very reasonable on the basis of dimensional analysis sasily identified in the SM5.42 solvati lused here b
but it may be questionable when dynamic aspects of solvation are astly laentned- in the solvation moaglused here because

7
dominated by long-range forces. Gpin that model is given by the generalized B&mi’ equation. Finally
Scheme G takes advantage of the fact thatx3$hbdels allow an

atom-by-atom decomposition of the free energy of solvation. Thus the 1 1\4 (x)
i : AGES™(k, x) = — 51— =] 32
standard state (0) free energy of solvation of a system at a fixed- EP X) = 2 e p (32)
geometryx is?627 K
AGYx) = AGgp(X) + Gepg(X) (22) In principle the dynamical partition factoffg are function of the

geometryx, but we make the further approximation of evaluating them
and its two parts are each decomposed on an atom-by-atomShasis: at the saddle point of the free energy surf&d) and treating them
as constants.
AGg(X) = ZAGEP(kv X) (23) 2.2.2. Solvent Response Spectral Profildthe solvation time is
taken as having the same values for all atoms of the solute and depends
only on the solvent. In the present work, following earlier numerical

and tests by McRae et at® we have chosen to use a single time constant,
_ i.e., we characterize the solvent response spectrum by a single
GepsX) = ZGCDS(k’ X) (24) frequency. For more accuracy one could use a larger number of effective
solvent coordinates, each with its own frequency. However, at the
In scheme G we write present stage of development this does not seem warranted because
the assumption of a single time constant probably leads to smaller error
AGgg(k, X) + Gepgk, X) than the many other uncertainties of the theory, such as the estimation
— mi atom atom of the solute-solvent coupling strength. For example, Tu¢kéound
fi = min G( )(k X)+ GS?DS )(k‘ X) (25) that nonequilibrium effects on reaction rates are determined mainly by
1 two solvent parameters, a single time scale characterizing the solvent
where, as explained in the following paragraph& al"m)(k) is the EP response spectral profile and the overall strength of the coupling.
solvation free energy for an isolated atémoalculated using the Born ~ Tucker’s treatment was based on a one-coordinate treatment of the
equatiof* with intrinsic Coulombic radiusox and using the partial solute. We use a full atomic representation of the solute, and so we
chargesy(x) obtained from the same geomettyand AGE™ k x) is replace the latter by an effective coupling strength for each atom of
the CDS component of the solvation free energy for an isolated atom the solute. However, we retain only a single time constant for all
k calculated with the atomic surface tensionthat atomk has in the solvent-solute couplings. This seems reasonable in light of the analysis

molecule of interest at geometwy If the functional group in the of Maroncelli et al §° which showed that, in many cases, the solvation
prototype differs sufficiently from that in the molecule under consid- time constant is primarily a function of solvent properties, not solute

eration, one might replaag in the atomic Born calculation bg from properties. The analysis of Maroncelli et al. is based on fast under-
the prototype, but that is not done here. damped solvent motion in the inertial streaming regime. This kind of
In the SM5.42 modé&l used here motion is known to account for more than 50% of solvent relaxation
in most case& 7! On the basis of this model, Maroncelli et al. gave
Gepgk, X) = Zak(X)Ak(X) (26) a simple approximation to the solvation relaxation timehich can

be easily estimated from the dipole moment, moments of inertia, density,
dielectric constant, and temperature of any polar solvent. This model
leads tor = 10 fs for water, in good agreement with the value of 8.5
_ M fs estimated by Garrett and Scheftdrom the molecular dynamics
B Oﬁ(x) ot () @7) simulations of Palmer and Schenté¥e recommend using the formula
of Maroncelli et af® as a standard that can be widely tested against
experiment, and we shall ugse= 10 fs in the present work. It is
interesting to note that this is much faster than values calculated by
assuming overdamped solvent relaxing by a diffusive mechanism; in
that case the solvation response time should be equal to the longitudinal

and

WhereaA(x) ando(x) are the atomic-number-dependent and atomic-
number-independent contributions to the geometry-dependent surface
tension of atonk, and theAy(x) is the exposed van der Waals surface
area of atonk. Therefore

Gep(K) = G, ()ALX) (28) relaxation timery, which itsglf may be e'_stimatgd from the Debye time
(or transverse relaxation time), the dielectric constant, and the
and refractive indexn. One obtain& 7
GERMK) = g,(x)A(atom) (29) (65) Hoijtink, G. J.; de Boer, E.; VanderMeij, P. H.; Weiland, W. P.

Recl. Tra. Chim. Pays-Bad4956 75, 487.

. . . 66) Peradejordi, FCah. Phys1963 17, 343.
The decomposition oAGgpis carried out by a method that we have §67§ Jaer:z;’ Tjggnlqpt. Sead. X?:ad. gci. Par965 261, 103.

previously! called method I. In this method (68) McRae, R. P.; Schenter, G. K.; Garrett, B. C.; Haynes, G. R.; Voth,
G. A.; Schatz, G. CJ. Chem. Physl1992 97, 7392.
Gp(k, ) (69) Maroncelli, M.; Kumar, V. P.; Papazyan, A. Phys. Cheml993
AGgdk, X) = AGgX)——— (30) 97, 13.
Gp(X) (70) Bruell, M.; Hynes, J. TJ. Phys. Chem1992 96, 4068.
(71) Hynes, J. T. IlUltrafast Dynamics of Chemical Syster§émon, J.
and D., Ed.; Kluwer: Dordrecht; 1994; p 345.

(72) Palmer, B. J.; Garrett, B. Q. Chem. Phys1993 98, 4047.
(64) Born, M.Z. Phys 192Q 1, 45. (73) Zusman, L. DSaviet Phys. JETPL976 42, 794.
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2 33 Table 1. Reaction Energetic and Structural Informafiiom R1
L =-—7
L¢P (33) theory ViorW®  AEor AW Ry Ric
o o ) best estimateg) 8—-10¢ -5.1
which yieldsz, = 200 fs for water. Molecular dynamics simulatiéhg! HF||AM1-SRP )¢ 7.8 —5.0 0.867 1.277
favor the faster values obtained from the Maroncelli et al. formula, HF||AM1-SRP (SES) 7.5 -3.0 0.841 1.297
not the slower, value. However, Hwang et &.advocated obtaining HF||AM1-SRP (ESP 7.5 -3.6 0.854 1.281

the solvation time from the autocorrelation of a diabatic energy gap
rather than the velocity autocorrelation fgnctlon, and this Iead_s to slower those for the making and breaking boni&arrier height relative to
values. Although the shpr_ter (faster) tlme_s are more conS|sten_t with reactants\¢* for gas phasealV* in liquid). © Energy of reaction, excluding
experiment? as a sensitivity check we will also report calculations  zero.-point contributions, relative to reactanfes( which equalsAV,
based on longer (slower) solvation times. Making the solvent slower for gas phase AW in liquid). ¢ Gas-phase resultéReference 3.
need not increase the NES effects since slower solvents may couplef Liquid-phase results with SES approximatiériiquid-phase results
less strongly to the reactive modes in some cases. with ESP approximation.

Forz = 10 fs, eq 14 gives a frequency of 417 ¢hand fort =
200 fs, it gives 21 cmt. For comparison we note that= 8.5 fs yields
v =491 cnm. aton? A A1(<pr0t0) fi D(kprotO) D

2.3. Software. The dynamics calculations all employed direct

aEnergies in kcal/mol, bond lengths in A. The bond distances are

Table 2. Atomic Diffusion Coefficients According to Scheme*A

dynamics techniques, i.e., the energies, solvation free energies, H 12.34 18.10 0.682 8.0 117

: ; : . X 3.80 18.10 0.210 8.0 38.1
gradients, and Hessians were obtained as needed by electronic structure c 11.77 15.40 0.764 15 20
calculations without the intermediate step of fitting a potential energy o 13.98 17.86 0.783 23 29
surface or potential of mean force surface. The electronic structure v 8.13 18.10 0.449 8.0 17.8
calculations employed the HAM1-SRP method and were carried out v 8.12 18.10 0.449 8.0 17.8
with the GAMESOLRATE program’® which is an interface of theoLYRATE W 8.98 18.10 0.496 8.0 16.1

dynamics cod€:"® and thecamesoL electronic structure cod&.The a - — — - g -
rate calculations were carried with a modified version 8.8afvRATE- " Areas in &, dlﬁu(sjllon coefﬂuents in 16° crP' ™. The labeling
version 8.17 and the methods will eventually be available in later %y{}tg\?f corresponding to the reaction CXYZOWH HX -+
version ofPoLYRATE. Dynamical participation factors were calculated '

usingamsoL® for Scheme A anasamesoL™ for scheme G. method are given in ref 3. After the gas-phase reaction rate
constants have been determined, CM2 and SM5.42R parameters
3. Application to R1 are needed for estimating partial charges, dipole moments, and

Previousl lculated th uti solvation energies; these parameters are discussed in ref 3. The
f rr?wc;]uzy, we caicu ateb the aquious-so utrl]on r?te clonstlantgas_ and solution-phase reaction energetics are given in Table
or the hydrogen atom abstraction from methanol molecule, ; ¢o. hoth the SES and ESP approximations.

reaction R1, with two approximations, namely, the separable |, e hresent work, we estimate the nonequilibrium solvation

equilibrium solvation (SES) and the equilibrium solvation path gt for reaction R1. As we discussed in the previous section,
(ESP) approximation$A linear mixing of Hartree-Fock and  yne ouling constan€; is determined by the solvation time

AM1 with specific reaction parameters (HRMl'_SRP) was (r) and the effective atomic diffusion constani3i). In the
used to calculate the electronic energies, gradients, Hessiansy ‘ocant work we use the value= 10 fs which obtained by
free energies, free-energy gradients, and free-energy Hessiang,,roncelli et al. for most of our calculations; the dynamics
along the reaction path. The parameters of the|A1-SRP calculations are also carried with longer solvation times for

(74) (a) Doubleday: C.; Mclver, J. W. Jr.; Page, MPhys. Cheml988 comparison. ) o .
92, 4367. (b) Baldridge, K. K.; Gordon, M. S.; Steckler, R.; Truhlar, D. G. We then need to estimate the atomic diffusion constants. The

J. Phys. Chem1989 93, 5107. (c) Garrett, B. C.; Koszykowski, M. L., first step, as explained in Section 2.2.1, is to specify the

Melius, C. F.; Page, MJ. Phys. Chem199Q 94, 7096. (d) For a review oto) — 5
see Truhlar, D. G. Understanding Chemical Reactivity 18:Ha Reaction prototype model. We use metharlb(P(f =15 x 10°° cn?

Path in ChemistryHeidrich, D., Ed.; Kluwer: Dordrecht, The Netherlands, S * in waterf! as a prototype for the C atom, wat@({t) =
1995; p 229. 2.3 x 1075 cn®? s71in waterf? as a prototype for the O atom,

(75) McConnell, JRotational Brownian Motion and Dielectric Thegry andD®) = 8 x 1075 cn? s~ for the H aton®3 Dynamical

Academic: New York, 1980. S
(76) Chuang, Y.-Y.: Corchado, J.; Truhlar, D. G. GAMESOLRATE-  Participation factors were calculated by the two schemes (A and

version 8.1, University of Minnesota, Minneapolis, 1999, based on G) described in Section 2.2.1.

Eﬁ%ﬂﬁg}u‘i‘vgﬁieos%l%tleand GAMESOL-version 2.2. [http://comp.che-  For scheme A, we then calculate the surface-accessible-area
'(77)'Steck§|’er R Hu %N__P_. Liu, Y.-P. Lynch, G. C.; Garrett, B. C.; of the hydrogen atom, saddle point, methanol, methane, and

Isaacson, A. D.; Melissas, V. S.; Lu, D.-h.; Truong, T. N.; Rai, S. N.; water molecules at the SM5.42/HAM1-SRP level. The
Hancock, G. C.; Lauderdale, J. G.; Joseph, T.; Truhlar, BC@nput. Phys. surface-accessible-area and the calculated atomic diffusion

Co{?g”ghlugffgsi 3 corchado. . C.o Fast. P. L Vill: Coitio, E constants are given in Table 2. For scheme G, we obtain the
L.: Hu, W.-P.; Liu, Y.-P.; Lynch, G. C.. Nguyen, K.: Jackels, C. F.; Gu, iree energy of solvation of the prototype molecules/atom and

M. Z; Rossi, |.; Clayton, S.; Melissas, V.; Steckler, R.; Garrett, B. C.; the saddle point at SM5.42/AM1-SRP level. The atomic

Isaacson, A. D.; Truhlar, D. G. POLYRATE-version 8.1, University of  gffsion constants evaluated with scheme G are given in Table
Minnesota, Minneapolis, 1999 [http://comp.chem.umn.edu/polyrate]. 3. We then carrv out the dvnamics calculations using a
(79) Li, J.; Zhu, T.; Hawkins, G. D.; Chuang, Y.-Y.; Liotard, D. A.; . y y 9

Rinaldi, D.; Cramer C. J.; Truhlar, D. G. GAMESOL-version 2.2, University ~ prerelease version aAMESOLRATEVersion8.1 with the same
of Minnesota, 1999, based on the General Atomic and Molecular Electronic dynamics parameters from the equilibrium solvation study
Structure System (GAMESS) as described in Schmidt, M. W.; Baldridge, carried previous!
K. K.; Boatz, J. A,; Elbert, S. T.; Gordon, M. S.; Jensen, J. H.; Koseki, S.; p Y . . . Y
Matsunaga, N.; Nguyen, K. A.; Su, S. J.; Windus, T. L.; Dupuis, M.; Although the parameteg; is called the “coupling constant”,
Montgomery, J. AJ. Comput. Chem1993 14, 1347 [http://comp.che- eq 8 shows that the coupling between the solvent coordinate
m.umn.edu/gamesol].
(80) Hawkins, G. D.; Giesen, D. J.; Lynch, G. C.; Chambers, C. C; (81) Handbook of Chemistry and Physitsde, D. R., Ed.; CRC: Boca
Rossi, |.; Storer, J. W.; Li, J.; Zhu, T.; Rinaldi, D.; Liotard, D. A.; Cramer, Raton, FL,1994; p 6253.
C. J.; Truhlar, D. G.awmsoL-version6.5.3, University of Minnesota, (82) Weingartner, HZ. Phys. Chem. (Munich)982 123 129.
Minneapolis, 1998 [http://comp.chem.umn.edamsol]. (83) Bartels, D., private communication quoted in Garrett and SchEnter.
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Table 3. Atomic Diffusion Coefficients According to Scheme*G

atonP  AGYK)  AGZE™K) fi D{Prote) D«
H 1.20 1.21 0.990 8.0 8.1
X -0.24 -0.38 0.634 8.0 12.6
C 1.40 1.61 0.870 1.5 1.7
o) -3.22 —4.25 0.757 2.3 3.0
Y -0.33 1.37 0.242 8.0 33.1
z -0.03 0.65 0.042 8.0 192.3
w -3.53 —22.30 0.158 8.0 50.5

a Free energy of solvation in kcal/mol, diffusion coefficients im10
cn? s1. P The labeling of atoms corresponding to the reaction CX-
YZOW + H — HX + CYZOW.

and solute coordinate is actually proportional to the product
FC;; this product is calledy. For example, using eq 13, egs 8,
11, and 12 can be written as

1 3N
WX, Y) = WO + e’y = 5 Al =Xy +
- 3N
1> AG =X (34)
2u0® 5
M p S A )
0% A uw’t= o
Vw = : (35)
3N
uo’y = 3 Al = X)
PW AN
- 4+ —1 .. —Ai
V2w — 8Xi8xj: o’ . (36)
— #wz

wherej =1, ..., N. Here,w is the frequency of the pure solvent
mode, which according to eq 13, is inversely proportional to
the solvation time, andy determines the coupling between
solute coordinate; and solvent coordinatg. Thus, we will
perform some calculations in whiahis varied at fixed values
of A.

The above considerations fix the parameters in the Hamil-
tonian. After that, the dynamics calculations proceed just as in
the equilibrium solvation path case except that there bre-3
1 coordinates instead ofN3 We consider four levels of
dynamical theory:

cvTHs canonical variational transition
state theorywithout tunneling
CVT/zCT*>™CVT  with zero-curvature tunneling
CVT/SCT*?#3CVT  with small-curvature tunneling
CVT/uOMT®* CVT  with microcanonical optimized

multidimensional tunneling

These methods are all explained in detailed elsewhetes+86

(84) Lu, D.-h.; Troung, T. N.; Melissas, V. S.; Lynch, G. C.; Liu, Y.-P.;
Garrett, B. C.; Steckler, R.; Isaacson, A. D.; Rai, S. N.; Hancock, G. C.;
Lauderdale, J. G.; Joseph, T.; Truhlar, D.Camput. Phys. Commuh992
71, 235.

(85) Liu, Y.-P.; Lynch, G. C.; Truong, T. N.; Lu, D.-h.; Truhlar, D. G.;
Garrett, B. CJ. Am. Chem. Sod 993 115 2408.

(86) Liu, Y.-P.; Lu, D.-h.; Gonzalez-Lafont, A.; Truhlar, D. G.; Garrett,
B. C.J. Am. Chem. Sod 993 115 7806.
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and therefore we limit ourselves to a one-sentence recap of each
method. The CVT approximation is based on finding the
dynamical bottleneck that has the maximum free energy of
activation; vibrations are quantized, but motion along the
reaction coordinate is classical. The CVT/ZCT approximation
includes tunneling along the minimum energy path (MEP). The
CVT/SCT approximation allows the tunneling paths to “cut the
corner”87-89 put it confines the path within a hypercylindrical
tube centered on the MEP; the width of the tube in the direction
of any vibration is the distance between the zero-point level
classical turning points of that vibration, and the direction of
corner cutting is determined by the internal centrifugal force
due to curvature of the MEP. The CM@@MT approximation
allows the corner cutting path to leave the MEP tube and, if
more favorable, to correspond to a straight-line Paf?
(shortest possible path) in isoinertial coordinates. These methods
have all been validated against accurate quantum mechanical
calculations for few-body systems where accurate quantal
calculations are possibfé.

Anticipating the results, we note that for the present reaction,
the uOMT result is almost the same as the large-curvature
limit, 86:99-92 jn which the tunnelings most dominated by the
straight-line path since the reaction path curves back on itself
so strongly in isoinertial coordinates.

4. Results and Discussion

Our “best” calculation is the one with our highest dynamical
level, CVT[lxOMT, and with our best estimates of the param-
eters, i.e.t = 10 fs and scheme G fdDy. This calculation
yields a 52% decrease in the reaction rate as compared to the
equilibrium solvation path (ESP) calculations. Since the ESP
calculations predicted a factor of 1.99 speedup as compared to
the gas-phase, the resulting prediction for the ratio of the rate
constant in the liquid phase to the rate constant in the gas phase
is1.99x (1 — 0.52)= 0.96, i.e., a 4% slowing down. This
still agrees with experiment within experimental error, since
the experimental result has been estimated to be a factor of 1.8
+ (factor of 3), i.e., between 0.6 and 5.4, by3uand a factor
of 1.23 (without an error bar) by Mezyk and Bart@g(The
uncertainty in the experimental result is primarily due to the
uncertainty in the absolute value in the gas phase.) Next we
present results for several other choices of the parameters
because they increase understanding.

Figure 1 shows the effective potential along the nonequilib-
rium reaction path at 298 K. The effective potend&}; is the
sum of the potential of mean forc&\/(x, y) in eq 3) and the
ZPE, i.e., it is the sum of the BorfOppenheimer energy, the
standard-state free energy of solvation, and the ZPE. The
effective potential is shown for three different values of the
solvation timer. In this figure, we observe that the effective
barrier height for 10 fs is higher than that for 200 fs, which is
closer to the ESP limit, which is 5.59 kcal/mol at the ESP saddle

(87) Kuppermann, A.; Adams, J. T.; Truhlar, D. G. Hhectronic and
Atomic Collisions Cobit B. C., Kurepa, M. V., Eds.; Institute of Physics:
Belgrade, 1973; p 149.

(88) Marcus, R. A.; Coltrin, M. EJ. Chem. Physl977, 67, 2609.

(89) Skodje, R. T.; Truhlar, D. G.; Garrett, B. @. Chem. Phys1982
77, 5955.

(90) Garrett, B. C.; Truhlar, D. G.; Wagner, A. F.; Dunning, T. H., Jr.
J. Chem. Physl1983 78, 4400.

(91) Bondi, D. K.; Connor, J. N. L.; Garrett, B. C.; Truhlar, D. G.
Chem. Phys1983 78, 5981.

(92) Truhlar, D. G.; Gordon, M. SSciencel99Q 249, 491.

(93) Allison, T. C.; Truhlar, D. G. IrModern Methods for Multidimen-
sional Dynamic Computations in Chemistifhompson, D. L., Ed.; World
Scientific: Singapore, 1998; p 618.

(94) Mezyk, S. P.; Bartels, D. MJ. Phys. Cheml994 98, 10578.
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Figure 2. Ratiokyegkespas evaluated by conventional transition state

theory. The curve is a polynomial fit. These calculations were performed
with constantA; which is evaluated using = 10 fs and the diffusion
constants obtained from scheme G.

Figure 1. Effective potential along the nonequilibrium reaction path

of R1 minus effective effective potential at reactants for three values

of the solvation time. The solid curve is fo= 10 fs, the dotted curve

is for z = 20 fs, and the dashed curve is for= 200 fs. All calculations

are carrie_d out with the diffusion_ coefficients eve_lluate_d using sche_me significant solute-solvent mode mixing. For < 1 fs, the gap

G. Thus, in the figure, the coupling strength varies with changes in -\ iy he eyen larger since eq 13 shows that the pure solvent mode

according to eq 7. frequency is inversely proportional to This explains whyknes/

kesp~ 1 for7 < 1 fsin Figure 2. Then, asincreases, it passes

through the solute frequencies and mixes with them; Figure 3

shows this process. At = 5 fs, the solvent frequency has

decreased t6-800 cnt?, and forr = 5—10 fs it mixes strongly

with the low-frequency modes of the solute. Wher 25 fs,

the frequencies of the bound modes become much larger, which

varied at fixedDy, and this explains why the equilibrium limit P:gnﬁefh?%g%e;;;?%rgzm)er: r;#gr:;lgngri;hznstr?]zl?grerggﬁ:gﬁd

1S achleveq for large in this kind of plot. i rate constant. Figure 5 gives a different perspective on setvent
To examine the dependence of the reaction rate constants oy te mode mixing. It shows how the solvent mode gets pushed

the solvation timex) for aflxed.str.ength of the solgte coupllng down in frequency by coupling to the solute foF 5 fs; this

to the bath, we used the substitutions introduced in the previous;p, ¢, increases the other frequencies. This figure dramatically

point and 5.75 kcal/mol at the 298 K ESP variational transition
state. This might appear counterintuitive (we expect to reach
the equilibrium limit for fast solvent, not slow solvent) until
one realizes that the coupling strength is varied if one varies
with fixed Dy, as was done in Figure 1. In particular, eqs 6 and
7 show that the coupling strengC; varies ag 32 wherer is

section (egs 34, 35, and 36), and we varieat fixed Ai. The illustrates how the solvent mode mixes strongly with the solute
fixed Ay are chosen to be the product of the origifalalue modes forr > 5 fs.
original G calculated withr = 10 fs and with the diffusion Recall that the solvent bath is coupled to the Cartesian

coefficients obtained from scheme G. Figure 2 shows the ratio ¢,4rginates of the solute molecule in our formalism. A possible
of the rate constants evaluated using the NES approximation t_oimprovement is to couple the bath mode to each of the normal
the rate constants evaluated with the ESP approxmatlon..Thlsmodes of the solute molecule differently; however, this might
ratio tends to 1.a$ tepds to zero Whgn we keep the coupling require more parameters to represent the coupling.

A constant. This validates the physical nature of the present  gpjes 4 and 5 and Figure 6 show how the agueous-solution
formulation because it agrees with the physical picture that if e constants and their ratios to gas-phase ones depend on the
the solvation time becomes smaller, the solvent molecules ofactive atomic diffusion coefficients when= 10 fs. In the

reorganize faster to accommodate the sudden change in thetables, D’,j denotes the diffusion constants obtained from

environment, and therefore the reaction rate constant tends toscheme A for the dvnamical particioation factolﬁ denotes
the equilibrium solvation limit. However, if the solvent mol- y P P

G
ecules require more time to reorganize, the nonequilibrium those from scheme G. FurthermorB,/2 means that the

solvation effect becomes more important. For example, Figure &0mic diffusign constants are taken as the half of bfe
2 shows that for = 25 fs, the rate constant evaluated using Values, and B’ means that the atomic diffusion constants are

the NES approximation is more than a factor of 30 smaller than taken to be twice th® values.
the ESP rate constant. First, consider the comparison of results obtained Wifto

The choice ofr affects not only the reaction coordinate but those obtained witD (rows 3 and 6 of Tables 4 and 5). It is
also the bound motions of the solute molecule. This is illustrated encouraging the results witb, = Df agree well with those for
in Figure 3, where, for discussion purposes, we show the Dy = DE because this shows that the model is not overly
frequencies at the liquid-phase saddle point as a functian of sensitive to the method used to estimate dynamical participation
(againt is varied with fixedA)); Figure 4 shows the corre- factors.

sponding variation in the ZPE. At the left-side of Figurer3< Next, consider the dependence on scalhgFrom eq 7 we
1 fs), the solute frequencies are basically the same as for see that the coupling constant is inversely proportional to the
0 fs, and the solvent frequency-g4200 cnT?, which is~800 diffusion constants as is the coupling strength therefore,

cm! larger than the largest solute frequency. This gap prevents Tables 4 and 5 are showing the aqueous solution rate constants



Nonequilibrium Salation Effects J. Am. Chem. Soc., Vol. 121, No. 43, 198®165

10 R —

)
A
o
8
T

-1

-
-

w

(=}

o

(=}
T

Saddie Point Frequency (cm

2000 |-
1000 |-
[ SN = == e = = — = = — = = — = — o — = ] —
- DEEfH---
| DDEHID---B-‘-‘-‘{j.—:_—_—_—g—-----ﬂ}---la} ----- He===ff==--- === - - -
0 O S S R S S S 1-.-.."[?‘."E"r--.-D--.-D--.--.-n-.--r‘x.......m....
0 5 10 15 20 25 30

Solvation Time (fs)

Figure 3. Frequencies of motions transverse to the reaction coordinate for a series of calculations im ishiehied withA; fixed as in Figure
2. The frequencies are evaluated at the ESP saddle point location.
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Figure 4. Nonequilibrium solvation effect on the ZPE at the ESP  Figure 5. Like Figure 3 except only two modes are shown: the solid
saddle point evaluated with different solvation timesith A fixed as curve is the uncoupled bath mode frequency of eq 13, and the dashed

in Figure 2. The solvent modes are included for estimating the ZPEs. curve is the coupled bath mode, i.e., the mode from the NES calculation
increase when the coupling strengths decrease at fixed whose eigenvector has the highest contribution from the bath coordinate.
Eventually, they reach the zero-coupling limit, which is the ESP. through the solute coordinates alone because the solute “drags”
In the other direction, as thBy decrease and the coupling along the bath modes. Thus, the barrier in the mass-scaled
strength increases, the calculated rate constants tends to zera@oordinate system is effectively widened. The present paper
These two trends are precisely as expected, and they confirmprovides the first information about the effect of nonequilibrium
again that the theory behaves in a physically realistic fashion. solvation on full multidimensional tunneling calculations. Tables
Typically the inclusion of dynamical coupling to the solvent 4 and 5 show that the nonequilibrium solvation effect is very
decreases the tunneling effect as sohgelvent coupling similar, independent of whether tunneling is included and
increases. This has been explained by McRae Btz follows. whether it is constrained to the small-curvature tube around the
When solute-solvent coupling is important, the tunneling-path MEP. For example, using our best parameters, the nonequilib-
length though all the coordinates is larger than the path length rium solvation effect is a factor of 0.42 at the CVT dynamical
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Table 4. Aqueous Solution Rate Constahtd Reaction R1 at 298

Chuang and Truhlar

Table 6. Kinetic Isotope Effectskun/kpn) at 298 K in Aqueous

K Solutior?

level ad Dy TSTT CVT ZCTd SCT® ﬂOMTf level ¢ Dy TST CVT ZCT SCT LCTe /LOMTf

SES 17 09 24 8.7 127 SES 044 027 053 081 053 048
ESP 0 o 2.2 1.9 4.8 16.6 25.9 ESP 0 o 0.39 034 0.60 0.91 0.51 0.51
NES 10 DC 0.79 0.71 1.7 5.6 11.5 NES 10 Dﬁ 0.27 024 041 0.60 0.49 0.49
NES 10 DE/4 0.12 0.12 0.28 0.89 4.1 NES 10 DE/4 0.17 0.17 0.27 0.39 0.25 0.25
NES 10 DE/Z 0.42 0.39 0.95 3.1 7.0 NES 10 DE/Z 0.23 0.22 0.36 0.53 0.34 0.34
NES 10 DE 0.90 0.81 2.0 6.5 12.4 NES 10 DE 0.29 026 044 0.66 0.37 0.37
NES 10 2p¢ 14 12 30 101 177 NES 10 pp¢ 033 029 050 076 042 042
NES 10 4D(k3 1.7 1.5 3.8 12.9 21.1 NES 10 4Df<3 0.35 0.31 0.53 0.80 0.44 0.44
NES 10 8DE 2.0 1.7 4.2 14.5 23.1 NES 10 BDE 0.36 0.32 0.55 0.84 0.44 0.44
NES 10 16DE 2.1 1.8 4.5 15.4 24.1 NES 10 16DkG 0.37 033 056 085 0.46 0.46
NES 10 ZODS 2.1 1.8 4.6 15.6 24.3 NES 10 2(]3'(G 0.38 0.34 0.58 0.87 0.49 0.50

a Rate constants in 1@ cm® molecule’* s7%.  Solvation time in fs.

¢ Conventional transition state theofCVT/ZCT. ¢ CVT/SCT.f CVT/

LOMT.

Table 5. Speedup KsowtiofKsad of R1
level 2 Dyg TST CVT ZCT® SCT uOMT®
SES 1.49 1.19 1.21 1.05 0.98
ESP 0 o 1.96 2.73 2.41 1.99 2.01
NES 10 DC 0.71 1.00 0.85 0.67 0.89
NES 10 DE/4 0.10 0.16 0.14 0.11 0.32
NES 10 pSp 037 055 048 037 055
NES 10 DE 0.80 1.14 0.99 0.78 0.96
NES 10 2DkG 1.22 1.72 1.50 1.21 1.37
NES 10 4DkG 1.54 2.15 1.88 1.55 1.64
NES 10 8DkG 1.74 2.42 2.11 1.74 1.79
NES 10 16DS 1.85 2.56 2.25 1.85 1.87
NES 10 op® 1.88 260 228 187 188

2 Solvation time in fs? Conventional transition state theofy/CVT/

ZCT.9CVT/SCT.¢CVT/uOMT. We notice that in all cases the CVT/

uOMT result, are within 2% the large-curvat&tdimit.

Figure 6. The ratioknegkgas@as a function of the scaling of the atomic
diffusion constants. All calculations for the figure were carried out with

G
D /D .

7=10fs.

level, 0.41 for CVT/ZCT, 0.39 for CVT/SCT, and 0.48 for CVT/
uOMT. Tables 4 and 5 show that similar ratios for CVT and
CVT/uOMT persist whenDy is large (weak solutesolvent

a2 The experiemental KIE is 0.&un/kpn = k(H + CH;OH)/k(D +
CH;0D). ® Solvation time in fs¢ CVT/ZCT. 4 CVT/SCT.¢ CVT/LCT.
fCVT/uOMT.

Table 7. Kinetic Isotope Effectskun/kup) at 298 K in Aqueous
Solutiort

level ® Dy TST CVT ZCT SCT LCT® uOMT!

SES 103 109 103 146 283 213
ESP 0 o 103 107 950 133 266 202
NES 10 p? 813 847 7.35 101 231 186
NES 10 p&s 619 693 611 842 179 168
NES 10 pSp 769 830 727 100 223 189
NES 10 p¢ 877 923 818 113 242 195
NES 10 2p¢ 945 984 869 122 257 202
NES 10 4p¢ 976 101 892 125 258 201
NES 10 g 995 103 910 127 258 201
NES 10 1ep¢ 101 104 921 130 259 19.9
NES 10 20p¢ 102 106 9.36 130 260 198

a2 The experiemental KIE is 2&an/kap = k(H + CHsOH)/K(H +
CD;OH). b Solvation time in fs¢ CVT/ZCT. 4 CVT/SCT.¢ CVT/LCT.
fCVT/uOMT.

nonequilibrium effects are 0.054.058 the CVT, CVT/ZCT,
and CVT/SCT levels, but 0.16 at the C\VilBMT level. This

is somewhat contrary to the lore of the field where nonequi-
librium solvation effects are sometimes guessed to be larger
when tunneling effects are larger.

Table 4 includes conventional transition state theory. The
primary point to be made about those results is that they differ
from our best results, again underscoring that conventional
transition state theory does not provide reliable estimates of
absolute rate constarsFrom Figure 5, we notice that the ratio
of the NES rate constant to the gas-phase rate constant increases
as the diffusion constants increase. As mentioned above, the
experimental value of this “speed up” was estimated to be 1.8
by ug and 1.2 by Mazyk and Barte?4.In Figure 5, we also
notice that the inclusion of the large-curvature-tunneling
contribution improves the calculated ratio.

Itis interesting to consider two kinetic isotope effects (KIES),
namely, (i) D+ CH3;OD — DH + CH,0OD and (ii) H+ CDs-

OH — HD + CD,OH. The corresponding KIEs are denoted as
(i) kpn/kon and (i) kyn/kap, where the first index means the
attacking species and the second index means the transferred
species. Table 6 gives the calculated KIEs for (i), and Table 7
gives the calculated KIEs for (ii). As the diffusion constants
increase, the value of the KIE kinetic tends to the ESP limit
due to a decrease in the coupling between the solvent and solute

coupling), but large-curvature tunneling begins to be effected coordinates. The experimental__es_timation of the KIEs for (i) is
differently from overbarrier reaction or small-curvature tunneling 0.7 by Lossack et & and for (i) is 20 by Anbar et &

when the solutesolvent coupling increases. For example, when

(95) Lossack, A. M.; Roduner, E.; Bartels, D. W.Phys. ChemA 1998

all effective atomic diffusion coefficients are divided by 4, the 102 7462.
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5. Concluding Remarks is a better justified approximation due to the nature of the
) . solute-solvent long-range forces. The solvation time can be
Many recent advances in transition state theory have gener-gpained from the velocity autocorrelation function generated
ated an appreciation of the role of n(_)nequmbr_lum solvation and f-om a molecular dynamics simulation or estimated based on
solvent friction on the rates of chemical reactidigput so far the dipole moment, moments of inertia, density, dielectric
there has been no framework for incorporating these effects into ¢qnstant, and temperature of the polar solvent. The ratio of the
pract!cal direct dynamics calculations of liquid-phase reactions. aqueous solution rate constant to the gas-phase rate constant
In this paper, we have presented a method for calculating yepends on the solvation time and the effective atomic diffusion
nonequilibrium solvation effects on liquid solution rate constants ~,nstants. We find that when the effective diffusion constants
by variational transition state theory with multidimensional increase, the reaction rate tends to the no-coupling limit, which
tunneling (VTST/MT); the method is applicable even for large- ig equivalent to the equilibrium solvation path result. The kinetic
curvature corner-cutting tunneling paths. The method is general isotope effects of R1 are also studied by using the same friction

from the point of view of the number of atoms and type of 5nq giffusion parameters for the H and D atoms.
potential function for the solute and from the point of view of

type of tunneling path, but it is limited to the linear response 6. Summary
regime for solute-solvent coupling. We applied this treatment
to a free radical reaction in aqueous solution that has previously
been studied both experimentdfty?® and theoretically.In this
treatment, the N solute Cartesian coordinates are coupled
multilinearly to a collective solvent coordinagebased on the
generalized Langevin equation. Unlike previous calculations in
the literature (except ref 42), the collective solvent coordinate
. . the rate constants by a factor of 2 for H CH3;OH. The
is coupled dynamically to all degrees of freedom of the solute. - . .

calculations presented in this paper show generally good

We use the WilsoiGF matrix method with redundant internal . . 2
; Lo - . agreement with the experimental values, and they lead to insight
coordinates to separate the vibrational and rotational motion of .

the solute. To calculate the coupling constants between themto the factors affecting the magnitude of the nonequilibrium

solvent and solute coordinates, it is required to estimate thef”mIOnaI effect.
solvation time and the effective atomic diffusion constants. TWo  aAcknowledgment. The authors are grateful to Chris Cramer
schemes are proposed to approximate the atomic diffusion ang Bruce Garrett for many helpful interactions. This work is

constants; one is based on the solvent-accessible surface aregypported in part by the National Science Foundation under
and the other is based on the free energy of solvation. The lattergyant No. CHE97-25965.

In the present work, we have presented a general linear-
response method to treat nonequilibrium solvation effects that
is applicable to polyatomic systems and can easily be extended
to arbitrarily large solutes. We have used the new method to
predict that nonequilibrium solvation is significant for a real
bimolecular reaction of neutral species, in particular lowering

(96) Anbar, M.; Meyerstein, DJ. Phys. Chem1964 68, 3184. JA991809I



